15.△ABC中,b=8,$c=8\sqrt{3}$,${S_{△ABC}}=16\sqrt{3}$,則∠A等于$\frac{π}{6}$或$\frac{5π}{6}$.

分析 由已知利用三角形面積公式可求sinA,結(jié)合A的范圍可求A的值.

解答 解:∵b=8,$c=8\sqrt{3}$,
${S_{△ABC}}=16\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×8×8\sqrt{3}×$sinA,
∴sinA=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{6}$或$\frac{5π}{6}$.
故答案為:$\frac{π}{6}$或$\frac{5π}{6}$.

點評 本題主要考查了三角形面積公式,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)集合A={x|2a<x<a+5},B={x|x<6},且A?B,則實數(shù)a的取值范圍為(1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用數(shù)學(xué)歸納法證明f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*)的過程中,假設(shè)當(dāng)n=k時成立,則當(dāng)n=k+1時,左邊f(xié)(k+1)=( 。
A.f(k)+$\frac{1}{{2}^{k+1}-1}$
B.f(k)+$\frac{1}{{2}^{k+1}}$
C.f(k)+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$
D.f(k)+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點分別為F1、F2,離心率為$\frac{1}{2}$,直線y=1與C的兩個交點間的距離為$\frac{{4\sqrt{6}}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)分別過F1、F2作l1、l2滿足l1∥l2,設(shè)l1、l2與C的上半部分分別交于A、B兩點,求四邊形ABF2F1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}的前n項和為Sn,2Sn=nan+5n
(Ⅰ)證明數(shù)列{an}為等差數(shù)列;
(Ⅱ)已知S3=21,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)滿足$f({\frac{1}{x+1}})=3x-1$,則f(x)的解析式是f(x)=$\frac{3}{x}$-4(不寫定義域).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\sqrt{3}sinx+cosx+a$(x∈R).
(1)求函數(shù)f(x)的最小正周期
(2)若f(x)有最大值3,求實數(shù)a的值;
(3)求函數(shù)f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,Rt△ABC的頂點A坐標(-2,0),直角頂點B(0,-2$\sqrt{2}$),頂點C在x軸上,點P為線段OA的中點.
(1)求BC所在直線的方程.
(2)M為Rt△ABC外接圓的圓心,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x4-8x3+18x2-1,x∈[-1,4]
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)的最值.

查看答案和解析>>

同步練習(xí)冊答案