3.如圖所示的空間幾何體中,底面四邊形ABCD為正方形,AF⊥AB,AF∥BE,平面ABEF⊥平面ABCD,DF=$\sqrt{5}$,CE=2$\sqrt{2}$,BC=2.
(Ⅰ)求二面角F-DE-C的大。
(Ⅱ)若在平面DEF上存在點P,使得BP⊥平面DEF,試通過計算說明點P的位置.

分析 (Ⅰ)以A為原點,AD為x軸,AB為y軸,AF為z軸,建立空間直角坐標系,利用向量法能求出二面角F-DE-C的大小.
(Ⅱ)設$\overrightarrow{DP}$=$λ\overrightarrow{DE}+μ\overrightarrow{DF}$,推導出$\overrightarrow{BP}$=$\overrightarrow{BD}+\overrightarrow{DP}$=(2-2λ-2μ,2λ-2,2λ+μ),由線面垂直的性質能求出P是線段DE上靠近E的三等分點.

解答 解:(Ⅰ)∵底面四邊形ABCD為正方形,AF⊥AB,AF∥BE,平面ABEF⊥平面ABCD,
∴AF⊥底面ABCD,
以A為原點,AD為x軸,AB為y軸,AF為z軸,建立空間直角坐標系,
∵DF=$\sqrt{5}$,CE=2$\sqrt{2}$,BC=2,
∴D(2,0,0),E(0,2,2),F(xiàn)(0,0,1),C(2,2,0),
$\overrightarrow{DE}$=(-2,2,2),$\overrightarrow{DF}$=(-2,0,1),$\overrightarrow{DC}$=(0,2,0),
設平面DEF的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=-2x+2y+2z=0}\\{\overrightarrow{n}•\overrightarrow{DF}=-2x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,2),
設平面DEC的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DE}=-2a+2b+2c=0}\\{\overrightarrow{m}•\overrightarrow{DC}=2b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,1),
設二面角F-DE-C的大小為θ,由圖形知θ為鈍角,
則cosθ=-$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=-$\frac{3}{\sqrt{6}•\sqrt{2}}$=-$\frac{\sqrt{3}}{2}$,
∴θ=$\frac{5π}{6}$,
∴二面角F-DE-C的大小為$\frac{5π}{6}$.
(Ⅱ)設$\overrightarrow{DP}$=$λ\overrightarrow{DE}+μ\overrightarrow{DF}$,
∵$\overrightarrow{DE}=(-2,2,2)$,$\overrightarrow{DF}$=(-2,0,1),
又$\overrightarrow{BD}$=(2,-2,0),$\overrightarrow{DP}$=$λ\overrightarrow{DE}$+μ$\overrightarrow{DF}$=(-2λ,2λ,2λ)+(-2μ,-2μ,2λ,2λ+μ),
∴$\overrightarrow{BP}$=$\overrightarrow{BD}+\overrightarrow{DP}$=(2-2λ-2μ,2λ-2,2λ+μ),
∵$\left\{\begin{array}{l}{\overrightarrow{BP}•\overrightarrow{DP}=0}\\{\overrightarrow{BP}•\overrightarrow{DE}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{-2(2-λ-2μ)+2λ+μ=0}\\{-2(2-2λ-2μ)+2(2λ-2)+2(2λ+μ)=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{μ=0}\\{λ=\frac{2}{3}}\end{array}\right.$,即$\overrightarrow{DP}$=$\frac{2}{3}\overrightarrow{DE}$.
∴P是線段DE上靠近E的三等分點.

點評 本題考查二面角的求法,考查滿足條件的點的位置的確定,考查推理論證能力、運算求解能力、空間思維能力,考查轉化化歸思想、數(shù)形結合思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.在平面四邊形ABCD中,$AB⊥BC,AB=2,BD=\sqrt{5},∠BCD=2∠ABD,△ABD$的面積為2.
(1)求AD的長;
(2)求△CBD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.現(xiàn)階段全國多地空氣質量指數(shù)“爆表”.為探究車流量與PM2.5濃度是否相關,現(xiàn)對北方某中心城市的車流量最大的地區(qū)進行檢測,現(xiàn)采集到12月某天7個不同時段車流量與PM2.5濃度的數(shù)據(jù),如下表:
車流量x(萬輛/小時)1234567
PM2.5濃度y(微克/立方米)30363840424450
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(2)規(guī)定當PM2.5濃度平均值在(0,50],空氣質量等級為優(yōu);當PM2.5濃度平均值在(50,100],空氣質量等級為良;為使該城市空氣質量為優(yōu)和良,利用該回歸方程,預測要將車流量控制在每小時多少萬輛內(結果以萬輛做單位,保留整數(shù)).
附:回歸直線方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y=\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+2y-5≥0\\ x-3y+5≥0\\ kx-y-3k≤0\end{array}\right.$,若目標函數(shù)z1=3x+y的最小值的7倍與z2=x+7y的最大值相等,則實數(shù)k的值為(  )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與PM2.5的濃度是否相關,現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間星期一星期二星期三星期四星期五星期六星期日
車流量x(萬輛)1234567
PM2.5的濃度y(微克/立方米)28303541495662
(1)由散點圖知y與x具有線性相關關系,求y關于x的線性回歸方程;(提示數(shù)據(jù):$\sum_{i=1}^7{{x_i}{y_i}=1372}$)
(2)(I)利用(1)所求的回歸方程,預測該市車流量為12萬輛時PM2.5的濃度;(II)規(guī)定:當一天內PM2.5的濃度平均值在(0,50]內,空氣質量等級為優(yōu);當一天內PM2.5的濃度平均值在(50,100]內,空氣質量等級為良,為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量不超過多少萬輛?(結果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)$f(x)=2sin({ωx+φ})+1({ω>0,|φ|<\frac{π}{2}}),f(α)=-1,f(β)=1$,若|α-β|的最小值為$\frac{3π}{4}$,且f(x)的圖象關于點$({\frac{π}{4},1})$對稱,則函數(shù)f(x)的單調遞增區(qū)間是( 。
A.$[{-\frac{π}{2}+2kπ,π+2kπ}],k∈Z$B.$[{-\frac{π}{2}+3kπ,π+3kπ}],k∈Z$
C.$[{π+2kπ,\frac{5π}{2}+2kπ}],k∈Z$D.$[{π+3kπ,\frac{5π}{2}+3kπ}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某食品廠只做了3種與“福”字有關的精美卡片,分別是“富強!薄ⅰ昂椭C!、“友善!、每袋食品隨機裝入一張卡片,若只有集齊3種卡片才可獲獎,則購買該食品4袋,獲獎的概率為(  )
A.$\frac{3}{16}$B.$\frac{4}{9}$C.$\frac{3}{8}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓T:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直線l經(jīng)過點P(m,0)與T相交于A、B兩點.
(1)若C(0,-$\sqrt{3}$)且|PC|=2,求證:P必為Γ的焦點;
(2)設m>0,若點D在Γ上,且|PD|的最大值為3,求m的值;
(3)設O為坐標原點,若m=$\sqrt{3}$,直線l的一個法向量為$\overrightarrow{n}$=(1,k),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.直線l過點P(-1,2)且與以點M(-3,-2)、N(4,0)為端點的線段恒相交,則l的斜率取值范圍是$({-∞,-\frac{2}{5}}]∪[{2,+∞})$.

查看答案和解析>>

同步練習冊答案