14.現(xiàn)階段全國多地空氣質(zhì)量指數(shù)“爆表”.為探究車流量與PM2.5濃度是否相關(guān),現(xiàn)對北方某中心城市的車流量最大的地區(qū)進(jìn)行檢測,現(xiàn)采集到12月某天7個(gè)不同時(shí)段車流量與PM2.5濃度的數(shù)據(jù),如下表:
車流量x(萬輛/小時(shí))1234567
PM2.5濃度y(微克/立方米)30363840424450
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)規(guī)定當(dāng)PM2.5濃度平均值在(0,50],空氣質(zhì)量等級為優(yōu);當(dāng)PM2.5濃度平均值在(50,100],空氣質(zhì)量等級為良;為使該城市空氣質(zhì)量為優(yōu)和良,利用該回歸方程,預(yù)測要將車流量控制在每小時(shí)多少萬輛內(nèi)(結(jié)果以萬輛做單位,保留整數(shù)).
附:回歸直線方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y=\widehatb\overline x$.

分析 (1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出回歸系數(shù),即可求出y關(guān)于x的線性回歸方程;
(2)利用$\frac{20}{7}x+\frac{200}{7}$≤100,即可得出結(jié)論.

解答 解:(1)∵$\overline x=4,\overline y=40$,$\sum_{i=1}^7{{x_i}{y_i}=1200,\sum_{i=1}^7{{x_i}^2=140}}$,
∴$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$=$\frac{20}{7}$,$\widehata=\overline y=\widehatb\overline x$=$\frac{200}{7}$,
故y關(guān)于x的線性回歸方程是:y=$\frac{20}{7}x+\frac{200}{7}$;
(2)$\frac{20}{7}x+\frac{200}{7}$≤100即x≤25,即預(yù)測要將車流量控制在每小時(shí)25萬輛內(nèi)..

點(diǎn)評 本題考查回歸方程,考查利用數(shù)學(xué)知識解決實(shí)際問題的能力,正確計(jì)算是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如右圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點(diǎn),點(diǎn)P,Q分別為面A1B1C1D1和線段B1C上的動點(diǎn),則△PEQ周長的最小值為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=log2x,x∈[1,8],則不等式1≤f(x)≤2成立的概率是( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-ex-a+a(e是自然對數(shù)的底數(shù) ).
(1)當(dāng)a=0是,求證:f(x)<-2;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A(-1,1),B(1,2),C(2,3),且$\overrightarrow{AB}⊥({\overrightarrow{BC}+λ\overrightarrow{AC}})$,則λ=(  )
A.$\frac{3}{8}$B.$-\frac{3}{8}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$則$f(\frac{1}{f(2)})$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左、右焦點(diǎn),雙曲線上存在一點(diǎn)P使得∠F1PF2=60°,|OP|=3b(O為坐標(biāo)原點(diǎn)),則該雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{7}{6}$D.$\frac{\sqrt{42}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示的空間幾何體中,底面四邊形ABCD為正方形,AF⊥AB,AF∥BE,平面ABEF⊥平面ABCD,DF=$\sqrt{5}$,CE=2$\sqrt{2}$,BC=2.
(Ⅰ)求二面角F-DE-C的大;
(Ⅱ)若在平面DEF上存在點(diǎn)P,使得BP⊥平面DEF,試通過計(jì)算說明點(diǎn)P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=sin(πx+θ)(|θ|<$\frac{π}{2}$)的部分圖象如圖,且f(0)=-$\frac{1}{2}$,則圖中m的值為( 。
A.1B.$\frac{4}{3}$C.2D.$\frac{4}{3}$或2

查看答案和解析>>

同步練習(xí)冊答案