10.設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c,2sinCsinB=sinB-sin(A-C).
(I)判斷△ABC的形狀;
(Ⅱ)當B為鈍角時,求sinA+sinC的取值范圍.

分析 (I)由誘導公式和和差化積公式對已知等式進行變形處理得到:sinB=cosA=sin($\frac{π}{2}$+A)=sin($\frac{π}{2}$-A),易得該三角形的形狀;
(Ⅱ)B-A=$\frac{π}{2}$且B為鈍角,可得A=B-$\frac{π}{2}$,C=π-A-B=$\frac{3π}{2}$-2B,B∈( $\frac{π}{2}$,π).可得cosB∈(-1,0).sinA+sinC=-2(cosB-$\frac{1}{4}$)2+$\frac{9}{8}$=f(B),再利用二次函數(shù)的單調(diào)性即可得出.

解答 解:(I)2sinCsinB=sinB-sin(A-C)=sin(A+C)-sin(A-C)=2cosAsinC.
∵sinC≠0,
∴sinB=cosA=sin($\frac{π}{2}$+A)=sin($\frac{π}{2}$-A),
①A+B=$\frac{π}{2}$,則△ABC為直角三角形;
②B=$\frac{π}{2}$+A,則△ABC為鈍角三角形;
(Ⅱ):∵B-A=$\frac{π}{2}$且B為鈍角,
∴A=B-$\frac{π}{2}$,C=π-A-B=π-(B-$\frac{π}{2}$)-B=$\frac{3π}{2}$-2B,B∈($\frac{π}{2}$,π).
∴cosB∈(-1,0).
sinA+sinC=sin(B-$\frac{π}{2}$)+sin($\frac{3π}{2}$-2B)=-cosB-cos2B=-2cos2B-cosB+1
=-2(cosB-$\frac{1}{4}$)2+$\frac{9}{8}$=f(B),
∴f(B)∈(0,1).
∴sinA+sinC的取值范圍是(0,1).

點評 本題考查了誘導公式、三角函數(shù)的單調(diào)性、二次函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知x+y+3=0,則$\sqrt{(x-2)^{2}+(y-1)^{3}}$的最小值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知(1+x)3+(1+x)4+…+(1+x)n+2的展開式中含x2項的系數(shù)是11n
(1)求n的值;
(2)求(2x+$\frac{1}{x}$)2n的展開式中,系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a+3)x+b在R上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.-2≤a≤6B.a≤-2或a≥6C.-2<a<6D.a<-2或a>6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,則sin(2α-$\frac{π}{6}$)的值為( 。
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.±$\frac{2\sqrt{2}}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在△ABC中,已知a=5,b=4,cos(A-B)=$\frac{31}{32}$,則cosC=$\frac{1}{8}$,AB=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一個六面體的三視圖如圖所示,其側(cè)視圖是邊長為2的正方形,則該六面體的表面積是( 。
A.$18+2\sqrt{5}$B.$16+2\sqrt{5}$C.$14+2\sqrt{5}$D.$12+2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且acosA=bcosB,則( 。
A.△ABC為等腰三角形B.△ABC為等腰三角形或直角三角形
C.△ABC為等腰直角三角形D.△ABC為直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某省高考改革實施方案指出:該省高考考生總成績將由語文、數(shù)學、外語3門統(tǒng)一高考成績和學生自主選擇的學業(yè)水平等級性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?
贊成不贊成合計
城鎮(zhèn)居民
農(nóng)村居民
合計
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=a+b+c+d$
P(K2≥k00.100.050.005
k02.7063.8417.879
(2)用樣本的頻率估計概率,若隨機在全省不贊成高考改革的家長中抽取3個,記這3個家長中是城鎮(zhèn)戶口的人數(shù)為x,試求x的分布列及數(shù)學期望E(x).

查看答案和解析>>

同步練習冊答案