7.設(shè)不等式組$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$表示的平面區(qū)域?yàn)閍,P(x,y)是區(qū)域D上任意一點(diǎn),則|x-2|-|2y|的最小值是-7.

分析 先作出平面區(qū)域,確定y≥0,然后利用絕對(duì)值的圖象特點(diǎn)進(jìn)行平移進(jìn)行判斷即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,
由圖象知y≥0,
設(shè)z=|x-2|-|2y|,則z=|x-2|-2y,
即y=$\frac{1}{2}$|x-2|-$\frac{1}{2}$z,
作出曲線y=$\frac{1}{2}$|x-2|,平移曲線y=$\frac{1}{2}$|x-2|-$\frac{1}{2}$z,
由圖象知當(dāng)曲線y=$\frac{1}{2}$|x-2|-$\frac{1}{2}$z,經(jīng)過(guò)點(diǎn)B時(shí),
曲線的頂點(diǎn)最大,此時(shí)-$\frac{1}{2}$z最小,
由$\left\{\begin{array}{l}{2x-y-2=0}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$得B(3,4),
此時(shí)z=|3-2|-2×4=1-8=-7,
故答案為:-7

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合以及平移是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題p:直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充分不必要條件是a=$\frac{1}{2}$;命題q:?x∈(0,π),sinx+$\frac{1}{sinx}$>2,則下列判斷正確的是( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∨(¬q)是假命題D.命題p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知F為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點(diǎn),A是橢圓的短軸的上頂點(diǎn),點(diǎn)B在x軸上,且AF⊥AB,A,B,F(xiàn)三點(diǎn)確定的圓C恰好與直線x+my+3=0相切,則m的值為( 。
A.±3B.$\sqrt{3}$C.±$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.將A,B,C,D,E排成一列,要求A,B,C在排列中順序?yàn)椤癆,B,C”或“C,B,A”( A,B,C可以不相鄰),這樣的排列數(shù)有( 。
A.12種B.20種C.40種D.60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C1的中心為原點(diǎn)O,離心率e=$\frac{\sqrt{2}}{2}$,其中一個(gè)焦點(diǎn)的坐標(biāo)為(-$\sqrt{2}$,0)
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)點(diǎn)Q(u,v)在橢圓C1上運(yùn)動(dòng)時(shí),設(shè)動(dòng)點(diǎn)P(2v-u,u+v)的運(yùn)動(dòng)軌跡為C2,若點(diǎn)T滿(mǎn)足:$\overrightarrow{OT}$=$\overrightarrow{MN}$+2$\overrightarrow{OM}$+$\overrightarrow{ON}$,其中M,N是C2上的點(diǎn),直線OM,ON的斜率之積為-$\frac{1}{2}$,試說(shuō)明:是否存在兩個(gè)定點(diǎn)F1,F(xiàn)2,使得|TF1|+|TF2|為定值?若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知關(guān)于x的不等式|x-1|+|x+3|≤m的解集不是空集,記m的最小值為t.
(Ⅰ)求t的值;
(Ⅱ)若不等式|x-1|+|x+3|>|x-a|的解集包含[-1,0],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,D是BC邊上靠近點(diǎn)B的三等分點(diǎn),$sin\frac{∠BAC+∠ACB}{2}=\frac{{\sqrt{6}}}{3}$.
(Ⅰ)若2cosC(acosB+bcosA)=c,求C;
(Ⅱ)若c=AD=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={x|2x2-5x-3≤0},B={y|y=log2(x2+3x-4)},則A∩B=( 。
A.[-3,$\frac{1}{2}$]B.[-$\frac{1}{2}$,3]C.(1,3]D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,∠A、∠B、∠C所對(duì)邊長(zhǎng)分別為a、b、c,已知$\overrightarrow m=(sinC,sinBcosA)$,$\overrightarrow n=(b,2c)$且$\overrightarrow m•\overrightarrow n=0$.
(1)求∠A的大小;
(2)若$a=2\sqrt{3}$,sinB+sinC=1,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案