18.已知集合A={x|$\frac{1}{2}$<2x≤2},B={x|y=ln(x-$\frac{1}{2}$)},則A∩B=( 。
A.$(\frac{1}{2},1]$B.(-1,1]C.$(-1,\frac{1}{2}]$D.

分析 分別求出A與B中不等式的解集確定出A與B,找出A與B的交集即可.

解答 解:由A中不等式變形得:2-1<2x≤21,
解得:-1<x≤1,即A=(-1,1],
由B中y=ln(x-$\frac{1}{2}$),得到x-$\frac{1}{2}$>0,
解得:x>$\frac{1}{2}$,即B=($\frac{1}{2}$,+∞),
則A∩B=($\frac{1}{2}$,1],
故選:A.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.用數(shù)學(xué)歸納法證明$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<F(n)$時(shí),由n=k不等式成立,證明n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,A,B,C所對的邊長分別為a,b,c,且滿足$cosA=\frac{3}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$,則△ABC的面積為( 。
A.2B.$\frac{3}{2}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+7≤0}\\{x+y-5≥0}\\{2x-y-4≥0}\end{array}\right.$,則z=x+2y的最值情況正確的是(  )
A.最小值為7,最大值為17B.最小值為9,最大值為17
C.最小值為17,無最大值D.最大值為17,無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z,滿足z(1+3i)=10i,則z的虛部為(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x)的定義域是R,則下列命題中不正確的是(  )
A.若f(x)是奇函數(shù),則f(f(x))也是奇函數(shù)
B.若f(x)是周期函數(shù),則f(f(x))也是周期函數(shù)
C.若f(x)是單調(diào)遞減函數(shù),則f(f(x))也是單調(diào)遞減函數(shù)
D.若方程f(x)=x有實(shí)根,則方程f(f(x))=x也有實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足,a1=1,an=$\frac{1}{{a}_{n+1}}$-$\frac{1}{2}$.
(1)求證:an≥$\frac{2}{3}$;
(2)求證:|an+1-an|≤$\frac{1}{3}$;
(3)求證:|a2n-an|≤$\frac{10}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D為A1B1的中點(diǎn).
(Ⅰ)證明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,點(diǎn)A1在平面ABC的射影在AC上,且BC與平面BC1D所成角的正弦值為$\frac{\sqrt{15}}{5}$,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過拋物線y=4x2的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),若y1+y2=5,則線段AB的長為$\frac{41}{8}$.

查看答案和解析>>

同步練習(xí)冊答案