精英家教網 > 高中數學 > 題目詳情
9.直線$\sqrt{3}$x+y+1=0的傾斜角為(  )
A.150oB.60oC.120oD.30o

分析 先求出直線的斜率,再求直線的傾斜角

解答 解:∵直線$\sqrt{3}$x+y+1=0斜率k=-$\sqrt{3}$,
∴直線$\sqrt{3}$x+y+3=0的傾斜角是120°,
故選:C

點評 本題考查直線的傾斜角的求法,是基礎題,解題時要注意直線方程的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

19.已知數列{an}為等差數列,若a1+a5+a9=π,則cos(a2+a8)的值為( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.復數z滿足(z-3)(2-i)=5i(i為虛數單位),則z的共軛復數$\overline{z}$在復平面上所對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.復數z滿足z=$\frac{2-i}{1-i}$,則z=( 。
A.1+3iB.3-iC.$\frac{3}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{3}{2}$i

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.設向量$\overrightarrow{a}$=(cosα,$\frac{\sqrt{2}}{2}$)的模為$\frac{\sqrt{3}}{2}$,則cos2α=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標準方程
(2)設直線l:y=kx+1與橢圓C相交于P,Q兩點,是否存在這樣的實數k,使得以PQ為直徑的圓過原點,若存在,請求出k的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知向量$\overrightarrow a{、^{\;}}\overrightarrow b$滿足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=-\sqrt{3}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知X的分布列如表:
X-1012
Pabc$\frac{5}{18}$
且b2=ac,$a=\frac{1}{2}$,則E(X)=(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知直線l:(k-1)x-2y+5-3k=0(k∈R)恒過定點P,圓C經過點A(4,0)和點P,且圓心在直線x-2y+1=0上.
(1)求定點P的坐標;
(2)求圓C的方程;
(3)已知點P為圓C直徑的一個端點,若另一個端點為點Q,問:在y軸上是否存在一點M(0,m),使得△PMQ為直角三角形,若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案