2.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,C=2A,cosA=$\frac{3}{4}$,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,則b=5.

分析 由C=2A,得到cosC=cos2A,cos2A利用二倍角的余弦函數(shù)公式化簡(jiǎn),將cosA的值代入求出cosC的值,發(fā)現(xiàn)cosC的值大于0,由A和B為三角形的內(nèi)角,得到A和B都為銳角,進(jìn)而利用同角三角函數(shù)間的基本關(guān)系求出sinA和sinC的值,最后利用三角形的內(nèi)角和定理及誘導(dǎo)公式化簡(jiǎn)cosB,再利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),將各自的值代入即可求出cosB的值;利用平面向量的數(shù)量積運(yùn)算法則化簡(jiǎn)已知的等式$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,由cosB的值,求出ac的值,由a,c,sinA和sinC,利用正弦定理列出關(guān)系式,將C=2A代入并利用二倍角的正弦函數(shù)公式化簡(jiǎn),用c表示出a,代入ac=24中,求出c的值,進(jìn)而得到a的值,最后由a,c及cosB的值,利用余弦定理即可求出b的值.

解答 解:∵C=2A,cosA=$\frac{3}{4}$>0,
∴cosC=cos2A=2cos2A-1=2×($\frac{3}{4}$)2-1=$\frac{1}{8}$>0,
∵0<A<π,0<C<π,
∴0<A<$\frac{π}{2}$,0<C<$\frac{π}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{7}}{4}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{3\sqrt{7}}{8}$,
∴cosB=cos[π-(A+C)]=-cos(A+C)=-(cosAcosC-sinAsinC)=$\frac{9}{16}$;
∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{27}{2}$,
∴accosB=$\frac{27}{2}$,
∴ac=24,
∵$\frac{a}{sinA}$=$\frac{c}{sinC}$=$\frac{c}{sin2A}$=$\frac{c}{2sinAcosA}$,
∴a=$\frac{c}{2cosA}$=$\frac{2}{3}$c,
由$\left\{\begin{array}{l}{a=\frac{2}{3}c}\\{ac=24}\end{array}\right.$解得$\left\{\begin{array}{l}{a=4}\\{c=6}\end{array}\right.$,
∴b2=a2+c2-2accosB=42+62-2×24×$\frac{9}{16}$=25,
∴b=5.
故答案為:5.

點(diǎn)評(píng) 此題考查了正弦、余弦定理,二倍角的正弦、余弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,誘導(dǎo)公式,兩角和與差的正弦函數(shù)公式,以及平面向量的數(shù)量積運(yùn)算法則,熟練掌握定理及公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$tan({α-β})=\frac{{\sqrt{2}}}{2},tanβ=-\frac{{\sqrt{2}}}{2}$,則tan(α-2β)=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知命題:
①α>β的充分不必要條件是sinα>sinβ
②若a,b∈R,ab<0,則$\frac{a}+\frac{a}≤-2$
③命題“若x+y≠5,則x≠2或y≠3”的否命題為假命題
④若a≠b,則a3+b3>a2b+ab2
其中真命題的序號(hào)是②③.(請(qǐng)把所有真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,函數(shù)$f(x)=3+2\sqrt{3}sinxcosx+2{cos^2}x$且f(A)=5.
(1)求角A的大。
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知O為坐標(biāo)原點(diǎn),F(xiàn)是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn),A,B分別為雙曲線C的左、右頂點(diǎn),P為雙曲線C上的一點(diǎn),且PF⊥x軸,過點(diǎn)A的直線l與線段PF交于M,與y軸交于點(diǎn)E,直線BM與y軸交于點(diǎn)N,若|OE|=3|ON|,則雙曲線C的離心率為( 。
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)g(x)=|x|+2|x+2-a|(a∈R).
(1)當(dāng)a=3時(shí),解不等式g(x)≤4;
(2)令f(x)=g(x-2),若f(x)≥1在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.2017年1月1日,作為貴陽(yáng)市打造“千園之城”27個(gè)示范性公元之一的泉湖公園正式開園,元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項(xiàng)目向全體市民開放,現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
(1)根據(jù)條件完成下列2×2列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?
  愿意 不愿意 總計(jì)
 男生   
 女生   
 總計(jì)   
(2)現(xiàn)用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名挑戰(zhàn)者,再?gòu)闹谐槿?人參加挑戰(zhàn),求抽取的2人中至少有一名男生的概率.
參考公式與數(shù)據(jù):
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.將一根長(zhǎng)為3米的繩子在任意位置剪斷,則剪得兩段的長(zhǎng)度都不小于1米的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列結(jié)論不正確的是( 。
A.若ab>bc,則a>cB.若a3>b3,則a>b
C.若a>b,c<0,則ac<bcD.若$\sqrt{a}$<$\sqrt$,則a>b

查看答案和解析>>

同步練習(xí)冊(cè)答案