【題目】2015年“雙十一”當天,甲、乙兩大電商進行了打折促銷活動,某公司分別調(diào)查了當天在甲、乙電商購物的1000名消費者的消費金額,得到了消費金額的頻數(shù)分布表如下:
甲電商:
消費金額(單位:千元) | [0,1) | [1,2) | [2,3) | [3,4) | [4,5] |
頻數(shù) | 50 | 200 | 350 | 300 | 100 |
乙電商:
消費金額(單位:千元) | [0,1) | [1,2) | [2,3) | [3,4) | [4,5] |
頻數(shù) | 250 | 300 | 150 | 100 | 200 |
(Ⅰ)根據(jù)頻數(shù)分布表,完成下列頻率分布直方圖,并根據(jù)頻率分布直方圖比較消費者在甲、乙電商消費金額的中位數(shù)的大小以及方差的大小(其中方差大小給出判斷即可,不必說明理由);
(Ⅱ)(。└鶕(jù)上述數(shù)據(jù),估計“雙十一”當天在甲電商購物的大量的消費者中,消費金額小于3千元的概率;
(ⅱ)現(xiàn)從“雙十一”當天在甲電商購物的大量的消費者中任意調(diào)查5位,記消費金額小于3千元的人數(shù)為X,試求出X的期望和方差.
【答案】(Ⅰ)見解析;(Ⅱ)(ⅰ),(ⅱ)E(X)=3,D(X)=
【解析】
(Ⅰ)由頻數(shù)分布表,能作出下列頻率分布直方圖,并根據(jù)頻率分布直方圖比較消費者在甲、乙電商消費金額的中位數(shù)的大小以及方差的大。
(Ⅱ)(i)利用等可能事件概率計算公式求解.
(ii)利用二項分布的性質(zhì)求解.
(Ⅰ)頻率分布直方圖如下圖所示,
甲的中位數(shù)在區(qū)間[2,3]內(nèi),乙的中位數(shù)在區(qū)間[1,2)內(nèi),所以甲的中位數(shù)大.
由頻率分布圖得甲的方差大.
(Ⅱ)(。┕烙嬙诩纂娚藤徫锏南M者中,購物小于3千元的概率為;
(ⅱ)由題可得購物金額小于3千元人數(shù)X~B(5,),
∴E(X)==3,D(X)=5××=.
科目:高中數(shù)學 來源: 題型:
【題目】某學校組織高一、高二年級學生進行了“紀念建國70周年”的知識競賽.從這兩個年級各隨機抽取了40名學生,對其成績進行分析,得到了高一年級成績的頻率分布直方圖和高二年級成績的頻數(shù)分布表.
(Ⅰ)若成績不低于80分為“達標”,估計高一年級知識競賽的達標率;
(Ⅱ)在抽取的學生中,從成績?yōu)閇95,100]的學生中隨機選取2名學生,代表學校外出參加比賽,求這2名學生來自于同一年級的概率;
(Ⅲ)記高一、高二兩個年級知識競賽的平均分分別為,試估計的大小關(guān)系.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an+1﹣an}是首項為,公比為的等比數(shù)列,a1=1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{(3n﹣1)an}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點為,點在橢圓上,且點關(guān)于原點對稱,直線的斜率的乘積為.
(1)求橢圓的方程;
(2)已知直線經(jīng)過點,且與橢圓交于不同的兩點,若,判斷直線的斜率是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場從2018年1月份起的前這個月,顧客對某商品的需求總量,(單位:件)與x的關(guān)系近似地滿足(其中,且),該商品第x月的進貨單價(單位:元)與x的近似關(guān)系是.
(1)寫出2018年第x月的需求量(單位:件)與x的函數(shù)關(guān)系式;
(2)該商品每件的售價為185元,若不計其他費用且每月都能滿足市場需求,試問該商場2018年第幾個月銷售該商品的月利潤最大,最大月利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有兩個零點,,則下列判斷:①;②;③;④有極小值點,且.則正確判斷的個數(shù)是( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列各項均為正數(shù),Sn是數(shù)列的前n項的和,對任意的,都有.數(shù)列各項都是正整數(shù),,且數(shù)列是等比數(shù)列.
(1) 證明:數(shù)列是等差數(shù)列;
(2) 求數(shù)列的通項公式;
(3)求滿足的最小正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標準果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機抽取個,利用水果的等級分類標準得到的數(shù)據(jù)如下:
等級 | 標準果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個水果中有放回地隨機抽取個,求恰好有個水果是禮品果的概率.(結(jié)果用分數(shù)表示)
(2)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考.
方案:不分類賣出,單價為元.
方案:分類賣出,分類后的水果售價如下:
等級 | 標準果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(元/kg) | 16 | 18 | 22 | 24 |
從采購單的角度考慮,應該采用哪種方案?
(3)用分層抽樣的方法從這個水果中抽取個,再從抽取的個水果中隨機抽取個,表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com