【題目】如圖,在幾何體中,,四邊形為矩形,平面平面,.
(1)求證:平面⊥平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
【答案】(1)證明見解析 (2)
【解析】
(1)根據(jù)余弦定理求得,根據(jù)勾股定理證得,結(jié)合面面垂直的性質(zhì)定理,證得平面,由此證得面平面.
(2)以為軸建立空間直角坐標(biāo)系,設(shè)出點(diǎn)坐標(biāo),計(jì)算平面和平面的法向量,通過兩個(gè)法向量計(jì)算的表達(dá)式,進(jìn)而求得的取值范圍.
(1)證明:在四邊形中,∵,∴.
∴,∴.
∵平面平面,平面平面,平面,平面.又因?yàn)?/span>平面,所以平面平面.
(2)由(1)知可建立分別以直線CA,CB,CF為x軸,y軸,z軸的如圖所示的空間直角坐標(biāo)系,令.
則.
∴.
設(shè)為平面的法向量,
由得取,則.
是平面的一個(gè)法向量,
∴.
,∴當(dāng)時(shí),有最小值,當(dāng)時(shí),有最大值.所以的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某大河的一段支流,岸線近似滿足∥寬度為7圓為河中的一個(gè)半徑為2的小島,小鎮(zhèn)位于岸線上,且滿足岸線現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切,設(shè)
(1)試將通道的長表示成的函數(shù),并指出其定義域.
(2)求通道的最短長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新藥,據(jù)監(jiān)測,如果成人按規(guī)定的劑量服用,服用藥后每毫升血液中的含藥量(微克)與服藥的時(shí)間(小時(shí))之間近似滿足如圖所示的曲線,其中是線段,曲線是函數(shù)(,,且,是常數(shù))的圖象.
(1)寫出服藥后關(guān)于的函數(shù)關(guān)系式;
(2)據(jù)測定,每毫升血液中的含藥量不少于微克時(shí)治療疾病有效.假設(shè)某人第一次服藥為早上,為保持療效,第二次服藥最遲應(yīng)當(dāng)在當(dāng)天幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥后小時(shí),該病人每毫升血液中的含藥量為多少微克?(精確到微克)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中, 分別是的中點(diǎn).
(1)求證: 平面;
(2)若三棱柱的體積為4,求異面直線與夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為比較甲、乙兩地某月14時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;
②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;
③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;
④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號為( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)定義域?yàn)?/span>,且對任意實(shí)數(shù),有,則稱為“形函數(shù)”,若函數(shù)定義域?yàn)?/span>,函數(shù)對任意恒成立,且對任意實(shí)數(shù),有,則稱為“對數(shù)形函數(shù)” .
(1)試判斷函數(shù)是否為“形函數(shù)”,并說明理由;
(2)若是“對數(shù)形函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若是“形函數(shù)”,且滿足對任意,有,問是否為“對數(shù)形函數(shù)”?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com