A. | ($\frac{1}{2{e}^{2}}$,$\frac{1}{e}$) | B. | ($\frac{1}{{e}^{2}}$,$\frac{1}{e}$) | C. | (e,2e) | D. | (e,e3) |
分析 根據(jù)題給定條件,設(shè)構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$與h(x)=$\frac{f(x)}{{e}^{2x}}$,再利用導(dǎo)數(shù)判斷在(1,2)上函數(shù)的單調(diào)性.
解答 解:設(shè)g(x)=$\frac{f(x)}{{e}^{x}}$,則g'(x)=$\frac{f'(x)-f(x)}{{e}^{x}}$>0
∴g(x) 在(0,+∞)上單調(diào)遞增,所以g(1)<g(2),即$\frac{f(1)}{e}$<$\frac{f(2)}{{e}^{2}}$⇒$\frac{f(1)}{f(2)}$<$\frac{1}{e}$;
令h(x)=$\frac{f(x)}{{e}^{2x}}$,則h'(x)=$\frac{f'(x)-2f(x)}{{e}^{2x}}<0$
∴h(x)在(0,+∞)上單調(diào)遞減,所以h(1)>h(2),即$\frac{f(1)}{{e}^{2}}$>$\frac{f(2)}{{e}^{4}}$⇒$\frac{f(1)}{f(2)}$>$\frac{1}{{e}^{2}}$
綜上,$\frac{f(1)}{f(2)}$<$\frac{1}{e}$ 且 $\frac{f(1)}{f(2)}$>$\frac{1}{{e}^{2}}$.
故選:B
點(diǎn)評 本題主要考查了導(dǎo)數(shù)與函數(shù)的單調(diào)性以及構(gòu)造法的應(yīng)用,屬中等難度題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e-1 | B. | e+1 | C. | e | D. | $\frac{1}{e}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{4}{3}$)∪(0,+∞) | B. | (-$\frac{4}{3}$,0) | C. | $({0,\frac{2}{3}}]$ | D. | [-2,-$\frac{4}{3}$)∪(0,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com