分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(0)=f′(2)=1,得到關(guān)于a,b的方程組,解出即可求出f(x)的解析式,從而求出切線(xiàn)方程即可;
(2)求出g(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.
解答 解:(1)因?yàn)閒′(x)=x2-2ax+b,
由f′(0)=f′(2)=1即$\left\{\begin{array}{l}b=1\\ 4-4a+b=1\end{array}\right.$,得$\left\{\begin{array}{l}a=1\\ b=1\end{array}\right.$,
則f(x)的解析式為$f(x)=\frac{1}{3}{x^3}-{x^2}+x$,即有f(3)=3,f′(3)=4
所以所求切線(xiàn)方程為4x-y-9=0.
(2)由(1)f(x)=$\frac{1}{3}$x3-x2+x,
∴$g(x)=\frac{1}{3}{x^3}-{x^2}-3x$,∴g′(x)=x2-2x-3,
由g′(x)=x2-2x-3>0,得x<-1或x>3,
由g′(x)=x2-2x-3<0,得-1<x<3,
∵x∈[-3,2],
∴g(x)的單調(diào)增區(qū)間為[-3,-1],減區(qū)間為(-1,2],
∵$g(-3)=-9<g(2)=-\frac{22}{3}$,
∴g(x)的最小值為-9.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及求切線(xiàn)方程問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com