3.若函數(shù)$f(x)=\sqrt{a{x^2}+bx+c}$(a,b,c∈R)的定義域和值域分別為集合A,B,且集合{(x,y)|x∈A,y∈B}表示的平面區(qū)域是邊長為1的正方形,則b+c的最大值為5.

分析 求出集合A,B,因為{(x,y)|x∈A,y∈B}表示的平面區(qū)域是邊長為1的正方形,所以$\frac{{\sqrt{{b^2}-4ac}}}{-a}=\sqrt{\frac{{4ac-{b^2}}}{4a}}=1$,可得a=-4,b2+16c=16,$c=1-\frac{b^2}{16}$,即可求出b+c的最大值.

解答 解:由題可知,a<0,b2-4ac>0,則$A=[{\frac{{-b+\sqrt{{b^2}-4ac}}}{2a},\;\;\frac{{-b-\sqrt{{b^2}-4ac}}}{2a}}]$,$B=[{0,\;\;\sqrt{\frac{{4ac-{b^2}}}{4a}}}]$,
因為{(x,y)|x∈A,y∈B}表示的平面區(qū)域是邊長為1的正方形,所以$\frac{{\sqrt{{b^2}-4ac}}}{-a}=\sqrt{\frac{{4ac-{b^2}}}{4a}}=1$,
可得a=-4,b2+16c=16,$c=1-\frac{b^2}{16}$,所以$b+c=-\frac{b^2}{16}+b+1=-\frac{1}{16}{(b-8)^2}+5$,當(dāng)b=8時有最大值5.
故答案為5.

點評 本題考查函數(shù)的定義域、值域的求法,考查配方法的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,點M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,則E的離心率為( 。
A.2B.$\frac{3}{2}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~250為重度污染;>300為嚴(yán)重污染.一環(huán)保人士記錄2017年某地某月10天的AQI的莖葉圖如下.
(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共30天計算)
(2)若從樣本中的空氣質(zhì)量不佳(AQI>100)的這些天,隨機地抽取兩天深入分析各種污染指標(biāo),求這該兩天的空氣質(zhì)量等級恰好不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x2-a|,g(x)=x2-ax,a∈R.
(Ⅰ)當(dāng)a=1時,求f(x)在區(qū)間[-1,1]上的最大值;
(Ⅱ)求f(x)在區(qū)間[-1,1]上的最大值M(a)的最小值;
(Ⅲ)若關(guān)于x的方程f(x)+g(x)=0在(0,2)上有兩個解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某四棱錐的三視圖如圖所示,該四棱錐外接球的表面積是(  )
A.B.C.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$\frac{c}{b-a}=\frac{sinA+sinB}{sinA+sinC}$.
(1)求角B的大;
(2)若b=$2\sqrt{2}$,a+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}為等差數(shù)列,且滿足a1+a5=90.若(1-x)m展開式中x2項的系數(shù)等于數(shù)列{an}的第三項,則m的值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1的左、右焦點分別為F1、F2,直線l經(jīng)過F1橢圓于A,B兩點,則△ABF2的周長為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}&{\;}\\{2x+y-6≤0}&{\;}\\{0≤y≤3}&{\;}\end{array}\right.$,且z=mx-y(m<2)的最小值為-$\frac{5}{2}$,則m=-1.

查看答案和解析>>

同步練習(xí)冊答案