18.某四棱錐的三視圖如圖所示,該四棱錐外接球的表面積是( 。
A.B.C.12πD.

分析 由已知中的三視圖可得:該幾何體的外接球相當(dāng)于棱長(zhǎng)為1的正方體的外接球,進(jìn)而可得答案.

解答 解:由已知中的三視圖可得:該幾何體的外接球相當(dāng)于棱長(zhǎng)為1的正方體的外接球,
故2R=$\sqrt{3}$,
故該四棱錐外接球的表面積S=4πR2=3π,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的幾何特征,棱錐的幾何特征,球的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知P(0,1)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn),點(diǎn)P到橢圓C的兩個(gè)焦點(diǎn)的距離之和為2$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C上異于點(diǎn)P的兩點(diǎn),直線PA與直線x=4交于點(diǎn)M,是否存在點(diǎn)A,使得S△ABP=$\frac{1}{2}{S_{△ABM}}$?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知命題p:?x0∈R,使2${\;}^{{x}_{0}}$+2${\;}^{-{x}_{0}}$=1;命題q:?x∈R,都有l(wèi)g(x2+2x+3)>0.下列結(jié)論中正確的是( 。
A.命題“¬p∧q”是真命題B.命題“p∧¬q”是真命題
C.命題“p∧q”是真命題D.命題“¬p∨¬q”是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在二項(xiàng)式${({x^2}-\frac{1}{x})^5}$的展開(kāi)式中,含x4項(xiàng)的系數(shù)是a,則${∫}_{1}^{a}$x-1dx=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(200,12.22),試計(jì)算數(shù)據(jù)落在(187.8,212.2)上的頻率;
參考數(shù)據(jù)
若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.
(Ⅲ)設(shè)生產(chǎn)成本為y,質(zhì)量指標(biāo)為x,生產(chǎn)成本與質(zhì)量指標(biāo)之間滿足函數(shù)關(guān)系y=$\left\{\begin{array}{l}{0.4x,x≤205}\\{0.8x-80,x>205}\end{array}\right.$,假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,試計(jì)算生產(chǎn)該食品的平均成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)$f(x)=\sqrt{a{x^2}+bx+c}$(a,b,c∈R)的定義域和值域分別為集合A,B,且集合{(x,y)|x∈A,y∈B}表示的平面區(qū)域是邊長(zhǎng)為1的正方形,則b+c的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)A(0,3),與雙曲線$\frac{{x}^{2}}{14}-\frac{{y}^{2}}{13}$=1有相同的焦點(diǎn)
(1)求橢圓C的方程;
(2)過(guò)A點(diǎn)作兩條相互垂直的直線,分別交橢圓C于P,Q兩點(diǎn),則PQ是否過(guò)定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.(x-$\frac{1}{x}$)(2x+$\frac{1}{x}$)5的展開(kāi)式中,常數(shù)項(xiàng)為-40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一個(gè)人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問(wèn)第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里( 。
A.156里B.84里C.66里D.42里

查看答案和解析>>

同步練習(xí)冊(cè)答案