15.已知數(shù)列{an}的首項(xiàng)為7,且${a_n}=\frac{1}{2}{a_{n-1}}+3({n≥2})$,則a6=(  )
A.$\frac{193}{32}$B.$\frac{385}{64}$C.$\frac{161}{32}$D.$\frac{97}{16}$

分析 由已知數(shù)列遞推式可得數(shù)列{an-6}是以1為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,求出等比數(shù)列的通項(xiàng)公式,可得an,則a6可求.

解答 解:由${a_n}=\frac{1}{2}{a_{n-1}}+3({n≥2})$,得${a}_{n}-6=\frac{1}{2}({a}_{n-1}-6)$(n≥2),
∵a1-6=7-6=1≠0,
∴$\frac{{a}_{n}-6}{{a}_{n-1}-6}=\frac{1}{2}$,即數(shù)列{an-6}是以1為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,
∴${a}_{n}-6=1×(\frac{1}{2})^{n-1}$,即${a}_{n}=(\frac{1}{2})^{n-1}+6$,
則${a}_{6}=(\frac{1}{2})^{5}+6=\frac{193}{32}$.
故選:A.

點(diǎn)評 本題考查數(shù)列遞推式,考查了由數(shù)列遞推式構(gòu)造等比數(shù)列求數(shù)列的通項(xiàng)公式,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖1,平行四邊形ABCD中,AC⊥BC,BC=AC=1,現(xiàn)將△DAC沿AC折起,得到三棱錐D-ABC(如圖2),且DA⊥BC,點(diǎn)E為側(cè)棱DC的中點(diǎn).
(Ⅰ)求證:平面ABE⊥平面DBC;
(Ⅱ)求三棱錐E-ABC的體積;
(Ⅲ)在∠ACB的角平分線上是否存在點(diǎn)F,使得DF∥平面ABE?若存在,求DF的長;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,并且經(jīng)過點(diǎn)M(-$\sqrt{2}$,1).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l與圓O:x2+y2=1相切,與橢圓C相交于A,B兩點(diǎn),求△AOB的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對于函數(shù)f(x),若關(guān)于x的方程f(2x2-4x-5)+sin($\frac{π}{3}$x+$\frac{π}{6}$)=0只有9個(gè)根,則這9個(gè)根之和為( 。
A.9B.18C.πD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱柱ABC-A1B1C1中,△ABC是等邊三角形,BC=CC1,D是A1C1中點(diǎn).
(Ⅰ)求證:A1B∥平面B1CD;
(Ⅱ)當(dāng)三棱錐C-B1C1D體積最大時(shí),求點(diǎn)B到平面B1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點(diǎn)P,Q分別是拋物線C:x2=2py(p>0)與圓M:x2+(y-p)2=1上的動點(diǎn),且|PQ|的最小值為2,則拋物線C的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)拋物線y2=2px(p>0)焦點(diǎn)為F,準(zhǔn)線為l,過焦點(diǎn)的直線分別交拋物線于A,B兩點(diǎn),分別過A,B作l的垂線,垂足C,D.若|AF|=2|BF|,且三角形CDF的面積為$\sqrt{2}$,則p的值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,D為BC中點(diǎn),AD=3.
(1)當(dāng)BC=4,AB=4時(shí),求AC的長;
(2)當(dāng)∠BAC=90°時(shí),求△ABC周長的最大值;
(3)當(dāng)∠BAD=45°,∠CAD=30°時(shí),求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案