分析 (1)利用cos∠ADB=-cos∠ADC,建立方程,求AC的長;
(2)當(dāng)∠BAC=90°時,周長l=6+6cosB+6sinB,利用三角函數(shù)知識求△ABC周長的最大值;
(3)當(dāng)∠BAD=45°,∠CAD=30°時,求出AB,AC,即可求△ABC的面積.
解答 解:(1)設(shè)AC=x,
∵cos∠ADB=-cos∠ADC,
∴$\frac{{{3^2}+4-{4^2}}}{2×2×3}=-\frac{{{3^2}+{2^2}-{x^2}}}{2×2×3}$,
∴$x=\sqrt{10}$;
(2)∠BAC=90°時,則BC=2AD=6
∴周長l=6+6cosB+6sinB,
$l=6+6\sqrt{2}sin({B+\frac{π}{4}})≤6+6\sqrt{2}$
∴最大值$6+6\sqrt{2}$當(dāng)且僅當(dāng)$B=\frac{π}{4}$成立
(3)
延長AD至E,使得AD=DE,∴ABEC為平行四邊形
∴$\frac{AC}{sin45°}=\frac{6}{sin105°}=\frac{EC}{sin30°}$,
∴$AC=3\sqrt{2}(\sqrt{6}-\sqrt{2})$,$EC=AB=3(\sqrt{6}-\sqrt{2})=AB$,
∴S=$\frac{1}{2}AB•AC•sin75°$=9($\sqrt{3}$-1).
點評 本題考查余弦定理、正弦定理的運用,考查三角函數(shù)知識,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{193}{32}$ | B. | $\frac{385}{64}$ | C. | $\frac{161}{32}$ | D. | $\frac{97}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2] | B. | [0,2] | C. | (-∞,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | -2 | C. | 4 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com