休假次數(shù) | 0 | 1 | 2 | 3 |
人數(shù) | 5 | 10 | 20 | 15 |
分析 (1)從該單位50名職工任選兩名職工,基本事件總數(shù)n=${C}_{50}^{2}$,這兩人休年假次數(shù)之和為4包含的基本事件個(gè)數(shù)m=${C}_{20}^{2}+{C}_{10}^{1}{C}_{15}^{1}$,由此能求出這兩人休年假次數(shù)之和為4的概率.
(2)從該單位任選兩名職工,用ξ表示這兩人休年假次數(shù)之差的絕對(duì)值,則ξ的可能取值分別是0,1,2,3,由此能求出ξ的分布列和數(shù)學(xué)期望.
解答 解:(1)∵從該單位50名職工任選兩名職工,基本事件總數(shù)n=${C}_{50}^{2}$,
這兩人休年假次數(shù)之和為4包含的基本事件個(gè)數(shù)m=${C}_{20}^{2}+{C}_{10}^{1}{C}_{15}^{1}$,
∴這兩人休年假次數(shù)之和為4的概率:
p=$\frac{m}{n}=\frac{{C}_{20}^{2}+{C}_{10}^{1}{C}_{15}^{1}}{{C}_{50}^{2}}$=$\frac{68}{245}$.
(2)從該單位任選兩名職工,用ξ表示這兩人休年假次數(shù)之差的絕對(duì)值,
則ξ的可能取值分別是0,1,2,3,
于是$P(ξ=0)=\frac{{C_5^2+C_{10}^2+C_{20}^2+C_{15}^2}}{{C_{50}^2}}=\frac{2}{7}$,
$P(ξ=1)=\frac{{C_5^1C_{10}^1+C_{10}^1C_{20}^2+C_{15}^1C_{20}^1}}{{C_{50}^2}}=\frac{22}{49}$,
$P(ξ=2)=\frac{{C_5^2C_{20}^1+C_{10}^1C_{15}^1}}{{C_{50}^2}}=\frac{10}{49}$,
$P(ξ=3)=\frac{{C_5^1C_{15}^1}}{{C_{50}^2}}=\frac{3}{49}$.
從而ξ的分布列:
ξ | 0 | 1 | 2 | 3 |
P | $\frac{2}{7}$ | $\frac{22}{49}$ | $\frac{10}{49}$ | $\frac{3}{49}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法及應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題型之一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f′(x)>0,g′(-x)>0 | B. | f′(x)>0,g′(-x)<0 | C. | f′(x)<0,g′(-x)>0 | D. | f′(x)<0,g′(-x)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -1 | C. | -2 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-e) | B. | (-∞,$\frac{1}{e}$) | C. | (0,$\frac{1}{e}$) | D. | (e,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com