13.設(shè)U=R,集合A={x|-3≤x≤5},B={x|x<-2,或x>6},求:
(1)A∩B;
(2)(∁UA)∪(∁UB).

分析 (1)利用交集的運(yùn)算性質(zhì)即可得出.
(2)利用(∁UA)∪(∁UB)=∁R(A∩B),即可得出.

解答 解:(1)A∩B=[-3,-2);
(2)(∁UA)∪(∁UB)=∁R(A∩B)=(-∞,-3)∪[-2,+∞).

點(diǎn)評(píng) 本題考查了不等式的解法、集合的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,過(guò)點(diǎn)F1的直線l,交橢圓E于A、B兩點(diǎn),過(guò)點(diǎn)F2的直線l2交橢圓E于C,D兩點(diǎn),且AB⊥CD,當(dāng)CD⊥x軸時(shí),|CD|=3.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,A,B,C所對(duì)的邊分別為a,b,c已知$b=\sqrt{2}$,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若1<ex<2,則x的集合為(  )
A.(0,ln2)B.(-ln2,0)C.(1,2)D.[0,ln2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知$sin({α-\frac{7π}{6}})=\frac{1}{3}$,則$sin({2α+\frac{7π}{6}})$的值為-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知指數(shù)函數(shù)$f(x)={(\frac{1}{2})^x}$,則使得f(m)>1成立的實(shí)數(shù)m的取值范圍是( 。
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.給出下列命題:
①函數(shù)y=sin(x+$\frac{π}{4}$)在閉區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù);
②直線x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5π}{4}$)圖象的一條對(duì)稱軸;
③要得到函數(shù)y=sin2x的圖象,需將函數(shù)y=cos(2x-$\frac{π}{3}$)的圖象向右平移$\frac{π}{12}$單位;
④函數(shù)f(x)=Asin(x+φ),(A>0)在x=$\frac{π}{4}$處取到最小值,則y=f($\frac{3π}{4}$-x)是奇函數(shù).
其中,正確的命題的序號(hào)是:②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求過(guò)點(diǎn)P(2,3),且滿足下列條件的直線方程:
(1)傾斜角等于直線x-$\sqrt{3}$y+4=0的傾斜角的二倍的直線方程;
(2)在兩坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點(diǎn).
(1)證明:平面AEF⊥平面B1BCC1;
(2)若D為AB中點(diǎn),∠CA1D=30°且AB=4,求三棱錐F-AEC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案