14.點(diǎn)P是橢圓上任意一點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點(diǎn),∠F1PF2的最大值是60°,則橢圓的離心率的值是$\frac{1}{2}$.

分析 由題意畫出圖形,結(jié)合∠F1PF2的最大值是60°,求解直角三角形得答案.

解答 解:由橢圓性質(zhì)可得,當(dāng)P為橢圓短軸的一個(gè)端點(diǎn)時(shí),∠F1PF2有最大值是60°,
如圖:

則∠F1PO=30°,
∴sin30$°=\frac{1}{2}=\frac{c}{a}$,即橢圓的離心率的值是$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),明確P在橢圓短軸的一個(gè)端點(diǎn)時(shí),∠F1PF2有最大值是關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)奇函數(shù)f(x)在區(qū)間[-7,-3]上是減函數(shù)且最小值為-6,函數(shù)g(x)=$\frac{ax+1}{x+2}$,其中a<$\frac{1}{2}$.
(1)判斷函數(shù)g(x)在(-2,+∞)上的單調(diào)性,并用定義法證明;
(2)求函數(shù)F(x)=f(x)+g(x)在區(qū)間[3,7]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(-1,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則$\overrightarrow{a}$在向量$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow$上的投影為( 。
A.$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{10}}{2}$C.-$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)$f(x)=lnx+\frac{a-1}{x},g(x)=ax-3({a>0})$.
(1)求函數(shù)φ(x)=f(x)+g(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=1時(shí),記h(x)=f(x)•g(x),是否存在整數(shù)λ,使得關(guān)于x的不等式2λ≥h(x)有解?若存在,請(qǐng)求出λ的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知雙曲線${C_1}:\frac{x^2}{6}-\frac{y^2}{2}=1$與雙曲線${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的離心率相同,且雙曲線C2的左、右焦點(diǎn)分別為F1,F(xiàn)2,M是雙曲線C2一條漸近線上的某一點(diǎn),且OM⊥MF2,${S_{△OM{F_2}}}=8\sqrt{3}$,則雙曲線C2的實(shí)軸長(zhǎng)為( 。
A.4B.$4\sqrt{3}$C.8D.$8\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2ex-2-2ax-x2(x≥0)
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間,并證明此時(shí)f(x)≥0成立;
(2)若f(x)≥0在x∈[0,+∞)上恒成立,求a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,一環(huán)形花壇分成A,B,C,D四塊,現(xiàn)有3種不同的花供選種,要求在每塊里種一種花,且相鄰的2塊種不同的花,則不同的種法總數(shù)為( 。
A.12B.24C.18D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在下列區(qū)間中,函數(shù)f(x)=e-x+4x-3的零點(diǎn)所在的區(qū)間為( 。
A.(-$\frac{1}{4}$,0)B.(0,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=a(lnx-1)+$\frac{1}{x}$的圖象與x軸相切,g(x)=(b-1)logbx-$\frac{{{x^2}-1}}{2}$.
(Ⅰ)求證:f(x)≤$\frac{{{{(x-1)}^2}}}{x}$;
(Ⅱ)若1<x<$\sqrt$,求證:0<g(x)<$\frac{{{{(b-1)}^2}}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案