14.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-4,x),且$\overrightarrow{a}$∥$\overrightarrow$,則x的值為-2.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,∴-4-2x=0,解得x=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查了向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=x3+x2+ax,a∈R是常數(shù),若曲線y=f(x)有且僅有一條平行于直線y=x的切線,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若直線y=kx+2與曲線$x=\sqrt{{y^2}+6}$交于不同的兩點(diǎn),那么k的取值范圍是( 。
A.($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$)B.($0,\frac{{\sqrt{15}}}{3}$)C.($-\frac{{\sqrt{15}}}{3},0$)D.($-\frac{{\sqrt{15}}}{3},-1$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.當(dāng)曲線y=-$\sqrt{4-{x}^{2}}$與直線kx-y+2k-4=0有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某地區(qū)氣象臺(tái)統(tǒng)計(jì),該地區(qū)下雨的概率是$\frac{4}{15}$,刮風(fēng)的概率為$\frac{2}{5}$,既刮風(fēng)又下雨的概率為$\frac{1}{10}$,設(shè)A為下雨,B為刮風(fēng),那么P(B|A)等于$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.當(dāng)x>0時(shí),函數(shù)$y=\frac{{{x^2}+4}}{x}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.現(xiàn)從編號(hào)為1~31的31臺(tái)機(jī)器中,用系統(tǒng)抽樣法抽取3臺(tái),測(cè)試其性能,則抽出的編號(hào)可能為(  )
A.4,9,14B.4,6,12C.2,11,20D.3,13,23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知m>0,n>0,且mn=2,則2m+n的最小值為(  )
A.4B.5C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.執(zhí)行如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是$\frac{8}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案