3.已知m>0,n>0,且mn=2,則2m+n的最小值為( 。
A.4B.5C.$2\sqrt{2}$D.$4\sqrt{2}$

分析 根據(jù)題意,由mn=2可得n=$\frac{2}{m}$,分析可得2m+n=2m+$\frac{2}{m}$=2(m+$\frac{1}{m}$),由基本不等式的性質(zhì)分析可得答案.

解答 解:根據(jù)題意,若mn=2,則n=$\frac{2}{m}$,
則2m+n=2m+$\frac{2}{m}$=2(m+$\frac{1}{m}$)≥2(2$\sqrt{m×\frac{1}{m}}$)=4,
當(dāng)且僅當(dāng)m=1時等號成立;
故選:A.

點評 本題考查基本不等式的性質(zhì),注意基本不等式使用的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0,
(1)當(dāng)a為何值時,直線l與圓C相切.
(2)當(dāng)直線l與圓C相交于A、B兩點,且|AB|=2$\sqrt{2}$時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-4,x),且$\overrightarrow{a}$∥$\overrightarrow$,則x的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{a}$與$\overrightarrow$均為單位向量,它們的夾角為120°,那么|$\overrightarrow{a}$+3$\overrightarrow$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$|{\overrightarrow{OA}}|=1$,$|{\overrightarrow{OB}}|=\sqrt{3}$,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為90°,點C在AB上,且∠AOC=30°.設(shè)$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)$\frac{5-i}{1+i}$(i是虛數(shù)單位)的在復(fù)平面上對應(yīng)的點位于第         象限(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=cos(2x-$\frac{2π}{3}$)+2cos2x+k的最小值為-3
(1)求常數(shù)k的值;
(2)若f(x0)=-$\frac{7}{5}$,x0∈[0,$\frac{π}{4}$],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作不愿意做志愿者工作合計
男大學(xué)生610
女大學(xué)生90
合計800
(1)根據(jù)題意完成表格;
(2)是否有95%的把握認為愿意做志愿者工作與性別有關(guān)?
參考公式及數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.250.150.100.050.025
K01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線$\left\{\begin{array}{l}{x=3+t}\\{y=2-2t}\end{array}\right.$(t為參數(shù))的斜率為(  )
A.2B.-2C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案