18.已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)求過點(diǎn)A(2,2)的切線方程.

分析 (1)由函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,求導(dǎo),可得±1是f′(x)=0的兩根,且f′(0)=-3,解方程組即可求得,a,b,c的值,從而求得f(x)的解析式;
(2)設(shè)切點(diǎn),求切線方程,得到2=-2x03+6x02-6,解方程可得x0,運(yùn)用點(diǎn)斜式方程,進(jìn)而得到所求切線的方程.

解答 解:(1)函數(shù)f(x)=ax3+bx2+cx的導(dǎo)數(shù)為f'(x)=3ax2+2bx+c,
依題意$\left\{\begin{array}{l}{f′(1)=3a+2b+c=0}\\{f′(-1)=3a-2b+c=0}\end{array}\right.$,
又f'(0)=-3即c=-3
∴a=1,b=0,
∴f(x)=x3-3x;
(2)設(shè)切點(diǎn)為(x0,x03-3x0),
∵f'(x)=3x2-3∴切線的斜率為f'(x0)=3x02-3,
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0),
又切線過點(diǎn)A(2,2),
∴2-(x03-3x0)=(3x02-3)(2-x0),
∴2x03-6x02+8=0,即為2(x0+1)(x0-2)2=0,
解得x0=-1或2,
可得過點(diǎn)A(2,2)的切線斜率為0或9,
即有過點(diǎn)A(2,2)的切線方程為y-2=0或y-2=9(x-2),
即為y-2=0或9x-y-16=0.

點(diǎn)評 此題是中檔題.考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值問題,和利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線問題,體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的思想,考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知z1=1-i,z2=2+2i.
(1)求z1•z2;
(2)若$\frac{1}{z}$=$\frac{1}{{z}_{1}}$+$\frac{1}{{z}_{2}}$,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若△ABC的內(nèi)角A,C,B成等差數(shù)列,且△ABC的面積為2$\sqrt{3}$,則AB邊的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列滿足:${a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{2}{a_n}+1,({n∈{N^*}})$,若${b_{n+1}}=({n-λ})({\frac{1}{a_n}+1})$,b1=-λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為λ<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)P是雙曲線$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1的右支上一點(diǎn),F(xiàn)1、F2分別為雙曲線的左、右焦點(diǎn),I為△PF1F2的內(nèi)心,若${S}_{△I{PF}_{1}}$=${S}_{△I{PF}_{2}}$+λ${S}_{△{{IF}_{1}F}_{2}}$成立,則λ的值為(  )
A.$\frac{5}{8}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{{e}^{x}}{2}$-$\frac{a}{{e}^{x}}$,若對任意的x1,x2∈[1,2],且x1≠x2時,[|f(x1)|-|f(x2)|](x1-x2)>0,則實(shí)數(shù)a的取值范圍為( 。
A.[-$\frac{{e}^{2}}{4}$,$\frac{{e}^{2}}{4}$]B.[-$\frac{{e}^{2}}{2}$,$\frac{{e}^{2}}{2}$]C.[-$\frac{{e}^{2}}{3}$,$\frac{{e}^{2}}{3}$]D.[-e2,e2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=2sin2(2x+$\frac{π}{6}$)-sin(4x+$\frac{π}{3}$)圖象的一個對稱中心可以為(  )
A.(-$\frac{5π}{48}$,0)B.(-$\frac{7π}{48}$,0)C.(-$\frac{5π}{48}$,1)D.(-$\frac{7π}{48}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知甲、乙兩煤礦每年的產(chǎn)量分別為200萬噸和260萬噸,需經(jīng)過東車站和西車站兩個車站運(yùn)往外地.東車站每年最多能運(yùn)280萬噸煤,西車站毎年最多能運(yùn)360萬噸煤,甲煤礦運(yùn)往東車站和西車站的運(yùn)費(fèi)價格分別為1元/t和1.5元/t,乙煤礦運(yùn)往東車站和西車站的運(yùn)費(fèi)價格分別為0.8元/t和1.6元/t.煤礦應(yīng)怎樣編制調(diào)運(yùn)方案,能使總運(yùn)費(fèi)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=cosωx•sin(ωx-$\frac{π}{3}$)+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{4}$(ω>0,x∈R),且函數(shù)y=f(x)圖象的一個對稱中心到它對稱軸的最近距離為$\frac{π}{4}$.
(1)求ω的值及f(x)的對稱軸方程;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=0,sinB=$\frac{4}{5}$,a=$\sqrt{3}$,求b的值.

查看答案和解析>>

同步練習(xí)冊答案