5.直線${l_1}:x+{a^2}y+6=0$和直線l2:(a-2)x+3ay+2a=0.若l1∥l2,則a的值為( 。
A.-1B.0C.0或-1D.0或1

分析 由3a-a2(a-2)=0,解得a=0,或a=3或-1.經(jīng)過(guò)驗(yàn)證即可得出.

解答 解:由3a-a2(a-2)=0,解得a=0,或a=3或-1.
經(jīng)過(guò)驗(yàn)證:a=0或-1滿足兩條直線平行.
故選:C.

點(diǎn)評(píng) 本題考查了平行線與斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)$f(x)=\sqrt{{{({\frac{1}{2}})}^{3x-1}}-8}$的定義域?yàn)椋?∞,-$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)$f(x)=({1-\frac{2}{{1+{2^x}}}})tanx$的圖象(  )
A.關(guān)于x軸對(duì)稱B.關(guān)于y軸對(duì)稱C.關(guān)于y=x軸對(duì)稱D.關(guān)于原點(diǎn)軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四邊形ABCD是邊長(zhǎng)為$\sqrt{2}$的正方形,CG⊥平面ABCD,DE∥BF∥CG,DE=BF=$\frac{3}{5}$CG.P為線段EF的中點(diǎn),AP與平面ABCD所成角為60°.在線段CG上取一點(diǎn)H,使得GH=$\frac{3}{5}$CG.
(1)求證:PH⊥平面AEF;
(2)求二面角A-EF-G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某市為了制定合理的節(jié)電方案,供電局對(duì)居民用電進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中m的值并估計(jì)居民月均用電量的中位數(shù);
(Ⅱ)現(xiàn)從第8組和第9組的居民中任選取2戶居民進(jìn)行訪問(wèn),則兩組中各有一戶被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某單位N名員工參加“我愛(ài)閱讀”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35).第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下面是年齡的分布表
 區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50)
 人數(shù) 28 a b  
(1)求正整數(shù)a、b、N的值;
(2)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取42人,則年齡在第1、2、3組的員工人數(shù)分別是多少?
(3)為了估計(jì)該單位員工的閱讀習(xí)慣,對(duì)第1、2、3組中抽出的42人是否喜歡閱讀國(guó)學(xué)類書籍進(jìn)行了調(diào)查,調(diào)查結(jié)果如表所示:(單位:人)
 喜歡閱讀國(guó)學(xué)類  不喜歡閱讀國(guó)學(xué)類 合計(jì)
 男 16 4 20
 女 8 14 22
 合計(jì) 24 18 42
根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下認(rèn)為該單位員工“是否喜歡閱讀國(guó)學(xué)類書籍和性別有關(guān)系”?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.05 0.025 0.010 0.005 0.001 
 k0 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且3a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則等比數(shù)列{an}公比q等于( 。
A.3B.9C.27D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.不等式組$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$的解集記作D,實(shí)數(shù)x,y滿足如下兩個(gè)條件:①?(x,y)∈D,y≥ax;②?(x,y)∈D,x-y≤a.則實(shí)數(shù)a的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)曲線C:$\frac{x^2}{4-k}-\frac{y^2}{1-k}=1$表示焦點(diǎn)在x軸上的橢圓,則k的范圍;
(2)求以F1(-2,0),F(xiàn)2(2,0)為焦點(diǎn),且過(guò)點(diǎn)$M(\sqrt{6},2)$的橢圓標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案