15.平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$不共線,且兩兩所成的角相等,若|$\overrightarrow{a}$|=|$\overrightarrow$|=2,|$\overrightarrow{c}$|=1,則|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=1.

分析 平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$不共線,且兩兩所成的角相等,可得所成的角為$\frac{2π}{3}$.可得|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}+{\overrightarrow{c}}^{2}+2(\overrightarrow{a}•\overrightarrow+\overrightarrow{a}•\overrightarrow{c}+\overrightarrow•\overrightarrow{c})}$,即可得出.

解答 解:平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$不共線,且兩兩所成的角相等,∴所成的角為$\frac{2π}{3}$.
∴$\overrightarrow•\overrightarrow{c}$=$\overrightarrow{a}•\overrightarrow{c}$=$2×1×cos\frac{2π}{3}$=-1,$\overrightarrow{a}•\overrightarrow$=$2×2×cos\frac{2π}{3}$=-2.
∴|$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}+{\overrightarrow{c}}^{2}+2(\overrightarrow{a}•\overrightarrow+\overrightarrow{a}•\overrightarrow{c}+\overrightarrow•\overrightarrow{c})}$=$\sqrt{{2}^{2}+{2}^{2}+{1}^{2}+2×(-1-1-2)}$=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了向量數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.黔東南州雷山西江千戶苗寨,是目前中國乃至全世界最大的苗族聚居村寨,每年來自世界各地的游客絡(luò)繹不絕.假設(shè)每天到西江苗寨的游客人數(shù)ξ是服從正態(tài)分布N(2000,10000)的隨機(jī)變量.則每天到西江苗寨的游客人數(shù)超過2100的概率為0.1587.(參考數(shù)據(jù):若ξ服從N(μ,δ2),有P(μ-δ<ξ≤μ+δ)=0.6826,P(μ-2δ<ξ≤μ+2δ)=0.9544,P(μ-3δ<ξ≤μ+3δ)=0.9974)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.運(yùn)行如圖所示的程序框圖,則輸出結(jié)果為( 。
A.1008B.1009C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知四棱錐P-ABCD的底面為矩形,△PBC為等邊三角形,平面PBC⊥平面ABCD,$AB=\sqrt{6}$,BC=3,則四棱錐P-ABCD外接球半徑為$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.秦九昭是我國南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項(xiàng)式求值的秦九昭算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九昭算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,4,則輸出y的值為(  )
A.6B.25C.100D.400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn)A1(-$\sqrt{6}$,0),A2($\sqrt{6}$,0),再取兩個(gè)動(dòng)點(diǎn)N1(0,m),N2(0,n),且mn=2.
(Ⅰ)求直線A1N1與A2N2交點(diǎn)M的軌跡C的方程;
(Ⅱ)過R(3,0)的直線與軌跡C交于P,Q,過P作PN⊥x軸且與軌跡C交于另一點(diǎn)N,F(xiàn)為軌跡C的右焦點(diǎn),若$\overrightarrow{RP}$=λ$\overrightarrow{RQ}$(λ>1),求證:$\overrightarrow{NF}$=λ$\overrightarrow{FQ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某程序框圖如圖所示,該程序運(yùn)行后若輸出S的值是2,則判斷框內(nèi)可填寫( 。
A.i≤2015?B.i≤2016?C.i≤2017?D.i≤2018?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

已知等差數(shù)列,為數(shù)列的前項(xiàng)和,若),記數(shù)列的前項(xiàng)和為,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求函數(shù)y=9-x2的導(dǎo)數(shù)(導(dǎo)函數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案