6.一個袋子中有k個紅球,4個綠球,2個黃球,這些球除顏色外其他完全相同.從中一次隨機取出2個球,每取得1個紅球記1分、取得1個綠球記2分、取得1個黃球記5分,用隨機變量X表示取到2個球的總得分,已知總得分是2分的概率為$\frac{1}{12}$.
(Ⅰ)求袋子中紅球的個數(shù);
(Ⅱ)求X的分布列和數(shù)學期望.

分析 (Ⅰ)當取到的2個球都是紅球時,總得分是2分,從而$P(X=2)=\frac{C_k^2}{{C_{k+6}^2}}=\frac{1}{12}$,由此能求出袋子中有3個紅球.
(Ⅱ)依題意,X的所有可能取值為2,3,4,6,7,10,分別求出相應的概率,由此能求出X的分布列和數(shù)學期望.

解答 (本題13分)
解:(Ⅰ)當取到的2個球都是紅球時,總得分是2分,
即$P(X=2)=\frac{C_k^2}{{C_{k+6}^2}}=\frac{1}{12}$,…(2 分)
化簡得11k2-23k-30=0,即(k-3)(11k+10)=0,…(3 分)
解得k=3或$k=-\frac{10}{11}$(舍去).
故袋子中有3個紅球.…(4 分)
(Ⅱ)依題意,X的所有可能取值為2,3,4,6,7,10.…(5 分)
$P(X=2)=\frac{1}{12}$,
$P(X=3)=\frac{C_3^1C_4^1}{C_9^2}=\frac{3×4}{36}=\frac{1}{3}$,
$P(X=4)=\frac{C_4^2}{C_9^2}=\frac{6}{36}=\frac{1}{6}$,
$P(X=6)=\frac{C_3^1C_2^1}{C_9^2}=\frac{3×2}{36}=\frac{1}{6}$,
$P(X=7)=\frac{C_4^1C_2^1}{C_9^2}=\frac{4×2}{36}=\frac{2}{9}$,
$P(X=10)=\frac{C_2^2}{C_9^2}=\frac{1}{36}$.…(10分)
∴X的分布列為:

 X 2 3 4 6 7 10
 P $\frac{1}{12}$ $\frac{1}{3}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{2}{9}$ $\frac{1}{36}$
…(11分)
$E(X)=2×\frac{1}{12}+3×\frac{1}{3}+4×\frac{1}{6}+6×\frac{1}{6}+7×\frac{2}{9}+10×\frac{1}{36}=\frac{14}{3}$.…(13分)

點評 本題考查概率的求法及應用,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.記cot(-80°)=a,那么sin20°=$\frac{2a}{{a}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=5sinθ}\end{array}\right.$(θ為參數(shù)且0≤θ≤$\frac{π}{2}$)上一點P與原點O的距離為$\sqrt{13}$,則P點坐標為($\frac{3\sqrt{3}}{2}$,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.正△ABP的頂點A(0,a)(a>0)為定點,頂點B在x軸上移動,且頂點A、B、P的順序是逆時針方向,求頂點P的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.打撲克的趙、錢、孫、李四家各從一副撲克的52張(去掉兩張王牌后)中隨機抽取13張,A=“趙家沒得到2”,B=“孫家得到1張2”.
(1)計算P(B|A);
(2)計算P(A|B);
(3)計算P(A∩B);
(4)計算P(A∪B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,是一個算法的程序框圖,當輸出的y值為2時,若將輸入的x的所有可能值按從小到大的順序排列得到一個數(shù)列{an},則該數(shù)列的通項公式為an=an=3n-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在平面直角坐標系xOy中,橢圓E的方程為$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1,直線l:y=$\frac{1}{2}$x與橢圓E相交于A,B兩點,C,D是橢圓E上異于A,B兩點,且直線AC,BD相交于點M,直線AD,BC相交于點N,求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.若動點M到定點A(0,1)與定直線l:y=3的距離之和為4.
(1)求點M的軌跡方程,并畫出方程的曲線草圖;
(2)記(1)得到的軌跡為曲線C,問曲線C上關(guān)于點B(0,t)(t∈R)對稱的不同點有幾對?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)的定義域為R,對任意x1<x2,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1,且f(1)=1,則不等式f(log2|3x-1|)<2-log2|3x-1|的解集為( 。
A.(-∞,0)B.(-∞,1)C.(-1,0)∪(0,3)D.(-∞,0)∪(0,1)

查看答案和解析>>

同步練習冊答案