4.已知$\overrightarrow a=(cos{66°},sin{6°}),\overrightarrow b=(cos{6°},sin{66°}),則\overrightarrow a•\overrightarrow b$等于( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用數(shù)量積的坐標(biāo)法表示$\overrightarrow{a}•\overrightarrow$,然后利用三角函數(shù)的公式化簡即可.

解答 解:由已知得到$\overrightarrow{a}•\overrightarrow$=cos66°cos6°+sin6°cos66°=cos60°=$\frac{1}{2}$;
故選B.

點評 本題考查了數(shù)量積公式以及三角函數(shù)的公式的逆用;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=3ax-k+1(a>0,且a≠1)過定點(2,4),且f(x)在定義域R內(nèi)是增函數(shù),則函數(shù)g(x)=loga(x-k)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系xoy中,已知橢圓$Γ:\frac{x^2}{4}+\frac{y^2}{b^2}=1({0<b<2})$和圓O:x2+y2=4,A為橢圓Γ的左頂點,B,C分別為橢圓Γ,圓O在軸上方的點,且$\overrightarrow{AB}=\frac{1}{2}\overrightarrow{AC}$..
(1)若$|{\overrightarrow{AC}}|=\frac{{8\sqrt{5}}}{5}$,求b的值;
(2)求橢圓Γ的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在三角形ABC的內(nèi)角A、B、C的對應(yīng)邊分別是a、b、c,已知a=2,b+c=7,cosB=-$\frac{1}{4}$,則b4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點,且BC=OA,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列各式的值
(1)(0.25)-1+($\frac{8}{27}$)${\;}^{\frac{1}{3}}$-($\frac{1}{16}$)-0.75+lg25+lg4+7${\;}^{lo{g}_{7}2}$.
(2)(log43+log83)(log32+log92)-log${\;}_{\frac{1}{2}}$$\root{4}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=log0.5x+log0.5(1-x).
(1)求f(x)的定義域;
(2)指出f(x)的單調(diào)遞減區(qū)間(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x2-1)=logm$\frac{{x}^{2}}{2-{x}^{2}}$(m>0,m≠1)
(1)判斷f(x)的奇偶性;
(2)解關(guān)于x的方程f(x)=logm$\frac{1}{x}$.
(3)解關(guān)于x的不等式f(x)≥logm(3x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)={sin^2}x+2\sqrt{3}sinxcosx+3{cos^2}x-1$
(Ⅰ)求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位長度得到函數(shù)g(x)的圖象,求g(x)在區(qū)間$[{0,\frac{π}{2}}]$上的最值.

查看答案和解析>>

同步練習(xí)冊答案