19.已知正數(shù)x,y滿足$\frac{1}{x}+\frac{16}{y}=xy$,則log2x+log2y的最小值為2.

分析 根據(jù)基本不等式和對(duì)數(shù)的運(yùn)算性質(zhì)即可求出

解答 解:正數(shù)x,y滿足$\frac{1}{x}$+$\frac{16}{y}$=xy,
∴xy=$\frac{1}{x}$+$\frac{16}{y}$≥2$\sqrt{\frac{16}{xy}}$=$\frac{8}{\sqrt{xy}}$,當(dāng)且僅當(dāng)y=16x時(shí),即x=$\frac{1}{2}$取等號(hào),
∴(xy)3≥43,
解得xy≥4,
∴l(xiāng)og2x+log2y=log2xy≥log24=2,
故答案為:2.

點(diǎn)評(píng) 本題考查了基本不等式的應(yīng)用,掌握一正二定三相等,屬于基礎(chǔ)題,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解下列不等式:
(1)|x-$\frac{1}{2}$|+|x+$\frac{1}{2}$|<2;
(2)|x+1|-|2x-3|<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.學(xué)校決定把12個(gè)參觀航天航空博物館的名額給二(1)、二(2)、二(3)、二(4)四個(gè)班級(jí).要求每個(gè)班分得的名額不比班級(jí)序號(hào)少;即二(1)班至少1個(gè)名額,二(2)班至少2個(gè)名額,…,則分配方案有(  )
A.10種B.6種C.165種D.495種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,PA=PC,∠APC=∠ACB=90°,∠BAC=60°,平面PAC⊥平面ABC.
(1)求證:面PAB⊥面PBC;
(2)求PB與面ABC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某企業(yè)為了更好地了解設(shè)備改造前后與生產(chǎn)合格品的關(guān)系,隨機(jī)抽取了180件產(chǎn)品進(jìn)行分析,其中設(shè)備改造前的合格品有36件,不合格品有49件,設(shè)備改造后生產(chǎn)的合格品有65件,不合格品有30件.根據(jù)所給數(shù)據(jù):
(1)寫出2×2列聯(lián)表;  (2)判斷產(chǎn)品是否合格與設(shè)備改造是否有關(guān),說明理由.
 P(K2≥k) 0.0500.010 0.001 
 k 3.841 6.635 10.828
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
數(shù)據(jù)支持:(65×49-36×30)2=4431025   101×79×85×95=64430825.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-a|.
(Ⅰ)當(dāng)a=1時(shí),求不等式;|x-a|≥2
(Ⅱ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)證明:AE⊥平面PCD;
(2)求二面角A-PD-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解籃球愛好者小李的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小李某月1號(hào)到5號(hào)每天打籃球時(shí)間x單位:小時(shí))與當(dāng)天投籃命中率y之間的關(guān)系:
時(shí)間x12345
命中率y0.40.50.60.60.4
(1)用線性回歸分析的方法求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.(2)預(yù)測(cè)小李該月6號(hào)打6小時(shí)籃球的投籃命中率.
$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,x),若$\overrightarrow{a}$∥$\overrightarrow$,則x=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案