【題目】已知函數(shù).
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)設(shè)函數(shù),,為曲線(xiàn)上任意兩個(gè)不同的點(diǎn),設(shè)直線(xiàn)的斜率為,若恒成立,求的取值范圍.
【答案】(1)當(dāng)時(shí),極值點(diǎn)的個(gè)數(shù)為0;當(dāng)時(shí),的極值點(diǎn)的個(gè)數(shù)為1;當(dāng)或時(shí),的極值點(diǎn)個(gè)數(shù)為2.
(2)
【解析】
(1)函數(shù)求導(dǎo)得的根,對(duì)根進(jìn)行討論得到函數(shù)單調(diào)區(qū)間從而求得極值.
(2)令,求出.等價(jià)轉(zhuǎn)換得,構(gòu)造新函數(shù)求導(dǎo)轉(zhuǎn)化為不等式恒成立問(wèn)題求解.
解:(1)函數(shù)的定義域?yàn)?/span>,
.
令,得或.
①當(dāng),即時(shí),
在和上,,在上,,當(dāng)時(shí),取得極大值,當(dāng)時(shí),取得極小值,故有兩個(gè)極值點(diǎn);
②當(dāng),即時(shí),
在和上,,在上,,同上可知有兩個(gè)極值點(diǎn);
③當(dāng),即時(shí),
,在上單調(diào)遞增,無(wú)極值點(diǎn);
④當(dāng),即時(shí),
在上,,在上,,當(dāng)時(shí),取得極小值,無(wú)極大值,故只有一個(gè)極值點(diǎn).
綜上,當(dāng)時(shí),極值點(diǎn)的個(gè)數(shù)為0;當(dāng)時(shí),的極值點(diǎn)的個(gè)數(shù)為1;當(dāng)或時(shí),的極值點(diǎn)個(gè)數(shù)為2.
(2)令,則,設(shè),,,則.
不妨設(shè),則由恒成立,可得恒成立.
令,則在上單調(diào)遞增,所以在上恒成立,即恒成立.
則恒成立,即恒成立.
又,所以恒成立,則,
因?yàn)?/span>,所以,
解得,即的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,左、右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn)(不與左、右頂點(diǎn)重合),且的周長(zhǎng)為6,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,直線(xiàn)交于點(diǎn).
(1)求橢圓方程;
(2)若直線(xiàn)與橢圓交于另一點(diǎn),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,菱形與正方形所在平面相交于.
(1)求作平面與平面的交線(xiàn),并說(shuō)明理由;
(2)若與垂直且相等,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn):的離心率,其左焦點(diǎn)到此雙曲線(xiàn)漸近線(xiàn)的距離為.
(1)求雙曲線(xiàn)的方程;
(2)若過(guò)點(diǎn)的直線(xiàn)交雙曲線(xiàn)于兩點(diǎn),且以為直徑的圓過(guò)原點(diǎn),求圓的圓心到拋物線(xiàn)的準(zhǔn)線(xiàn)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線(xiàn)投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線(xiàn)可供選擇,生產(chǎn)線(xiàn)①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為15萬(wàn)元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬(wàn)元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬(wàn)元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元.生產(chǎn)線(xiàn)②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為14萬(wàn)元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬(wàn)元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬(wàn)元.
(1)若選擇生產(chǎn)線(xiàn)①,求生產(chǎn)成本恰好為18萬(wàn)元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線(xiàn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)由方程確定,對(duì)于函數(shù)給出下列命題:
①存在,,使得成立;
②,,使得且同時(shí)成立;
③對(duì)于任意,恒成立;
④對(duì)任意,,;都有恒成立.
其中正確的命題共有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,,,平面平面,點(diǎn)在棱上.
若為的中點(diǎn),證明:.
若與平面所成角的正弦值為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x﹣5|.
(1)當(dāng)a=2時(shí),求證:﹣3≤f(x)≤3;
(2)若關(guān)于x的不等式f(x)≤x2﹣8x+20在R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與圓相外切,且與直線(xiàn)相切.
(1)記圓心的軌跡為曲線(xiàn),求的方程;
(2)過(guò)點(diǎn)的兩條直線(xiàn)與曲線(xiàn)分別相交于點(diǎn)和,線(xiàn)段和的中點(diǎn)分別為.如果直線(xiàn)與的斜率之積等于1,求證:直線(xiàn)經(jīng)過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com