分析 (1)利用正弦定理求出bc,根據(jù)cosA=$\frac{7}{8}$.求出sinA,可得△ABC的面積;
(2)a=$\sqrt{10}$,利用余弦定理求出b+c,可得△ABC的周長(zhǎng).
解答 解:(1)已知acsinB=4sinA,
由正弦定理,得abc=4a,
∴bc=4.
∵cosA=$\frac{7}{8}$.
∴sinA=$\frac{\sqrt{15}}{8}$.
△ABC的面積:S=$\frac{1}{2}$bcsinA=$\frac{\sqrt{15}}{4}$.
(2)∵a=$\sqrt{10}$,cosA=$\frac{7}{8}$.bc=4.
由余弦定理:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{7}{8}$.
∴$^{2}+{c}^{2}=\frac{7}{4}bc+10$.
∴(b+c)2=25.即b+c=5.
故得△ABC的周長(zhǎng)為:a+c+b=5+$\sqrt{10}$.
點(diǎn)評(píng) 本題考查△ABC的面積的求法,正余弦定理的合理運(yùn)用.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 點(diǎn)P與圖中的點(diǎn)D重合 | B. | 點(diǎn)P與圖中的點(diǎn)E重合 | ||
C. | 點(diǎn)P與圖中的點(diǎn)F重合 | D. | 點(diǎn)P與圖中的點(diǎn)G重合 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com