3.某校自主招生面試共有7道題,其中4道理科題,3道文科題,要求不放回地依次任取3道題作答,則某考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率為( 。
A.$\frac{1}{7}$B.$\frac{1}{5}$C.$\frac{3}{7}$D.$\frac{4}{5}$

分析 設(shè)事件A表示“第一次抽到理科題”,事件B表示“第二次抽到文科題”,事件C表示“第三次抽到文科題”,則P(A)=$\frac{4}{7}$,P(ABC)=$\frac{4}{7}×\frac{3}{6}×\frac{2}{5}$=$\frac{4}{35}$,由此利用條件概率能求出某考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率.

解答 解:設(shè)事件A表示“第一次抽到理科題”,
事件B表示“第二次抽到文科題”,事件C表示“第三次抽到文科題”,
則P(A)=$\frac{4}{7}$,P(ABC)=$\frac{4}{7}×\frac{3}{6}×\frac{2}{5}$=$\frac{4}{35}$,
∴某考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率為:
P(BC|A)=$\frac{P(ABC)}{P(A)}$=$\frac{\frac{4}{35}}{\frac{4}{7}}$=$\frac{1}{5}$.
故選:B.

點(diǎn)評(píng) 本題考查概率的求法,考查相互獨(dú)立事件概率簡(jiǎn)乘法公式、條件概率計(jì)算公式等基礎(chǔ)知識(shí),考查推理論能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知F1,F(xiàn)2是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn),離心率為$\frac{1}{2}$,M、N是平面內(nèi)兩點(diǎn),滿足$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$,線段NF1的中點(diǎn)P在橢圓上,△F1MN周長(zhǎng)為12
(1)求橢圓C的方程;
(2)若過(guò)(0,2)的直線l與橢圓C交于A、B,求$\overrightarrow{OA}$$•\overrightarrow{OB}$(其中O為坐標(biāo)原點(diǎn))的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,1),$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則cosθ=( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{9×10}$=$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知隨機(jī)變量X~B(10,0.6),則變量Y=3X+2的期望和方差分別為( 。
A.8,2.4B.8,21.6C.20,2.4D.20,21.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,已知點(diǎn)P($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),將向量$\overrightarrow{OP}$繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)x弧度得到向量$\overrightarrow{OQ}$.
(1)若x=$\frac{π}{4}$,求點(diǎn)Q坐標(biāo);
(2)已知函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,且f(α)•f(α-$\frac{π}{3}$)=$\frac{1+\sqrt{3}}{4}$,若α∈(0,π),求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x3+$\frac{3}{2}$x2+mx在x=1處有極小值,g(x)=f(x)-$\frac{2}{3}$x3-$\frac{3}{4}$x2+x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,對(duì)任意的x1、x2∈(0,+∞),且x1≠x2,有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>1恒成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)三角形具有以下性質(zhì):(1)三邊組成一個(gè)等差數(shù)列;(2)最大角是最小角的2倍.則該三角形三邊從小到大的比值為( 。
A.4:5:6B.3:5:7C.4:6:8D.3:5:6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知回歸直線方程$\widehat{y}$=1.2x+$\widehat$,樣本中心點(diǎn)為(3,4),則$\widehat$=( 。
A.0.2B.0.3C.0.4D.0.5

查看答案和解析>>

同步練習(xí)冊(cè)答案