6.一個(gè)棱長(zhǎng)為4的正方體,過(guò)正方體中兩條互為異面直線的棱的中點(diǎn)作直線,則該直線被正方體的外接球球面截在球內(nèi)的線段長(zhǎng)是(  )
A.2$\sqrt{11}$B.2$\sqrt{10}$C.6D.4$\sqrt{2}$

分析 求出球心到MN的距離,利用勾股定理求出該直線被正方體的外接球球面截在球內(nèi)的線段長(zhǎng).

解答 解:如圖所示,球的半徑為2$\sqrt{3}$,球心(2,2,2),
M(4,0,2),N(0,2,4),MN的中點(diǎn)(2,1,3),
球心到MN的距離為$\sqrt{2}$,
∴該直線被正方體的外接球球面截在球內(nèi)的線段長(zhǎng)是2$\sqrt{12-4}$=4$\sqrt{2}$,
故選D.

點(diǎn)評(píng) 本題考查球內(nèi)接多面體,考查勾股定理的運(yùn)用,求出球心到MN的距離是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為( 。
A.-2B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)A作斜率為-1的直線l,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為B,C.若$2\overrightarrow{AB}=\overrightarrow{BC}$,則雙曲線的離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某中學(xué)的十佳校園歌手有6名男同學(xué),4名女同學(xué),其中3名來(lái)自1班,其余7名來(lái)自其他互不相同的7個(gè)班,現(xiàn)從10名同學(xué)中隨機(jī)選擇3名參加文藝晚會(huì),則選出的3名同學(xué)來(lái)自不同班級(jí)的概率為$\frac{49}{60}$,設(shè)X為選出3名同學(xué)中女同學(xué)的人數(shù),則該變量X的數(shù)學(xué)期望為$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知等差數(shù)列{an},Sn是{an}的前n項(xiàng)和,則對(duì)于任意的n∈N*,“an>0”是“Sn>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.從4雙不同鞋子中任取4只,則其中恰好有一雙的不同取法有48種,記取出的4只鞋子中成雙的鞋子對(duì)數(shù)為X,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=$\frac{6}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,且當(dāng)x∈(0,+∞)時(shí),f(x)=|log2x|,若a=f($\frac{1}{3}$),b=f(-4),c=f(2),則a,b,c之間的大小關(guān)系是( 。
A.c<b<aB.c<a<bC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.從1,2,3,4,5,6這6個(gè)數(shù)中,每次取出兩個(gè)不同的數(shù),分別記作a,b,可以得到lga-lgb的不同值的個(gè)數(shù)是( 。
A.28B.26C.24D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)m∈R,向量$\overrightarrow{a}$=(m+2,1),$\overrightarrow$=(1,-2m),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{34}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案