14.某中學(xué)的十佳校園歌手有6名男同學(xué),4名女同學(xué),其中3名來(lái)自1班,其余7名來(lái)自其他互不相同的7個(gè)班,現(xiàn)從10名同學(xué)中隨機(jī)選擇3名參加文藝晚會(huì),則選出的3名同學(xué)來(lái)自不同班級(jí)的概率為$\frac{49}{60}$,設(shè)X為選出3名同學(xué)中女同學(xué)的人數(shù),則該變量X的數(shù)學(xué)期望為$\frac{6}{5}$.

分析 ①利用排列組合求出所有基本事件個(gè)數(shù)及選出的3名同學(xué)是來(lái)自互不相同班級(jí)的基本事件個(gè)數(shù),代入古典概型概率公式求出值;
(Ⅱ)隨機(jī)變量X的所有可能值為0,1,2,3,P(X=k)=$\frac{{∁}_{4}^{k}{∁}_{6}^{3-k}}{{∁}_{10}^{3}}$,(k=0,1,2,3)列出隨機(jī)變量X的分布列求出期望值.

解答 解:設(shè)“選出的3名同學(xué)是來(lái)自互不相同班級(jí)”為事件A,
則P(A)=$\frac{{∁}_{3}^{1}×{∁}_{7}^{2}+{∁}_{7}^{3}}{{∁}_{10}^{3}}$=$\frac{49}{60}$
所以選出的3名同學(xué)是來(lái)自互不相同班級(jí)的概率為$\frac{49}{60}$.
(Ⅱ)解:隨機(jī)變量X的所有可能值為0,1,2,3,P(X=k)=$\frac{{∁}_{4}^{k}{∁}_{6}^{3-k}}{{∁}_{10}^{3}}$,(k=0,1,2,3).
所以隨機(jī)變量X的分布列是:

 X 0 1 2 3
 P $\frac{1}{6}$ $\frac{1}{2}$ $\frac{3}{10}$ $\frac{1}{30}$
隨機(jī)變量X的數(shù)學(xué)期望EX=0+$1×\frac{1}{2}+2×\frac{3}{10}+3×\frac{1}{30}$=$\frac{6}{5}$.
故答案為:$\frac{49}{60}$,$\frac{6}{5}$.

點(diǎn)評(píng) 本題考查古典概型及其概率公式,互斥事件,離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.i是虛數(shù)單位,復(fù)數(shù)z=$\frac{3i}{1+i}$的虛部是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.等邊△ABC在橢圓內(nèi),A是橢圓中心,B是橢圓的一個(gè)焦點(diǎn),則該橢圓離心率的取值范圍是(  )
A.(0,$\sqrt{3}$-1)B.($\sqrt{3}$-1,1)C.(0,$\frac{\sqrt{2}}{2}$)D.$\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在銳角△ABC中,A,B,C角所對(duì)的邊分別為a,b,c,且$\frac{acosB+bcosA}{c}$=$\frac{2\sqrt{3}}{3}$sinC.
(1)求∠C;
(2)若$\frac{a}{sinA}$=2,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若(b-$\frac{6}{5}$c)sinB+csinC=asinA,則sinA=( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知平面內(nèi)兩點(diǎn)A(0,-a),B(0,a)(a>0),有一動(dòng)點(diǎn)P在平面內(nèi),且直線PA與直線PB的斜率分別為k1,k2,令k1•k2=m,其中m≠0.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)已知N點(diǎn)在圓x2+y2=a2上,設(shè)m∈(-1,0)時(shí)對(duì)應(yīng)的曲線為C,設(shè)F1,F(xiàn)2是該曲線的兩個(gè)焦點(diǎn),試問(wèn)是否存在點(diǎn)N,使△F1NF2的面積S=$\sqrt{-m}$•a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)棱長(zhǎng)為4的正方體,過(guò)正方體中兩條互為異面直線的棱的中點(diǎn)作直線,則該直線被正方體的外接球球面截在球內(nèi)的線段長(zhǎng)是( 。
A.2$\sqrt{11}$B.2$\sqrt{10}$C.6D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.為調(diào)查高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,某重點(diǎn)高中數(shù)學(xué)教師對(duì)新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題時(shí)間不少于15小時(shí)的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績(jī)不足120分的占$\frac{8}{13}$,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表:
分?jǐn)?shù)大于等于120分分?jǐn)?shù)不足120分合計(jì)
周做題時(shí)間不少于15小時(shí)15419
周做題時(shí)間不足15小時(shí)101626
合計(jì)252045
(Ⅰ)請(qǐng)完成上面的2×2列聯(lián)表,并判斷在“犯錯(cuò)誤概率不超過(guò)0.01”的前提下,能否認(rèn)為“高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間之間有相關(guān)關(guān)系”;
(Ⅱ)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,若在上述9名學(xué)生中隨機(jī)抽取2人,求至少1人分?jǐn)?shù)不足120分的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.過(guò)點(diǎn)P(1,2)作兩條直線pm,pn,分別與拋物線y2=4x相交于點(diǎn)M和點(diǎn)N,連接MN,若直線PM,PN,MN的斜率都存在且不為零,設(shè)其斜率分別為k1,k2,k3,則$\frac{1}{{k}_{1}}+\frac{1}{{k}_{2}}-\frac{1}{{k}_{3}}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案