16.i是虛數(shù)單位,復數(shù)z=$\frac{3i}{1+i}$的虛部是$\frac{3}{2}$.

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵z=$\frac{3i}{1+i}$=$\frac{3i(1-i)}{(1+i)(1-i)}=\frac{3}{2}+\frac{3}{2}i$,
∴復數(shù)z=$\frac{3i}{1+i}$的虛部是$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在梯形ADEB中,AB∥DE,AD=DE=2AB,△ACD是正三角形,AB⊥平面ACD,且F是CD的中點.
(1)判斷直線AF與平面BCE的位置關系并加以證明;
(2)求平面BCE與平面ACD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某市小型機動車駕照“科二”考試共有五項考察項目,假設某人目前只訓練了其中三個項目,現(xiàn)駕校欲從五項考察項目中任意抽出兩項對其進行一次測試,則恰好抽到一項該人訓練了的項目的概率為( 。
A.$\frac{3}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知數(shù)列{an},an=(2n+m)+(-1)n(3n-2)(m∈N*,m與n無關),若$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1對一切m∈N*恒成立,則實數(shù)k的取值范圍為(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≤x-1}\\{x≤3}\\{x+y≥2}\end{array}\right.$,則$\frac{y}{x}$的取值范圍是[$-\frac{1}{3}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{4}x|,0<x≤4}\\{-x+5,x>4}\end{array}\right.$若關于x的方程f(x)-m=0有三個不相等的實數(shù)解x1,x2,x3,則x1•x2•x3的取值范圍是(4,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,則目標函數(shù)z=2x+y的最大值為( 。
A.-2B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知半徑為r的球O與正方體ABCD-A1B1C1D1的各面都相切,記球O與正方體ABCD-A1B1C1D1的各面的交線的總長度為f(r),則f(1)=6π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.某中學的十佳校園歌手有6名男同學,4名女同學,其中3名來自1班,其余7名來自其他互不相同的7個班,現(xiàn)從10名同學中隨機選擇3名參加文藝晚會,則選出的3名同學來自不同班級的概率為$\frac{49}{60}$,設X為選出3名同學中女同學的人數(shù),則該變量X的數(shù)學期望為$\frac{6}{5}$.

查看答案和解析>>

同步練習冊答案