6.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\sqrt{3}$,且過點($\sqrt{2}$,$\sqrt{2}$)
(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線c交于不同的兩點A、B,且線段AB的中點在圓x2+y2=5上,求m的值.

分析 (1)由e=$\frac{c}{a}$=$\sqrt{3}$,點滿足雙曲線的方程,結(jié)合a,b,c的關(guān)系,可知a=1,b=$\sqrt{2}$,c=$\sqrt{3}$,由此能求出雙曲線方程;
(2)聯(lián)立直線x-y+m=0和雙曲線的方程,消去y,得x2-2mx-m2-2=0,故x1+x2=2m,所以AB中點(m,2m),代入圓方程能求出m的值.

解答 解:(1)由題意可得e=$\frac{c}{a}$=$\sqrt{3}$,
代入點($\sqrt{2}$,$\sqrt{2}$),可得$\frac{2}{{a}^{2}}$-$\frac{2}{^{2}}$=1,
又a2+b2=c2
解得a=1,b=$\sqrt{2}$,c=$\sqrt{3}$,
可得雙曲線的方程為x2-$\frac{{y}^{2}}{2}$=1;
(2)直線x-y+m=0代入雙曲線的方程2x2-y2=2,
消去y可得x2-2mx-m2-2=0,
△=4m2+4(m2+2)>0恒成立.
設(shè)A(x1,y1),B(x2,y2),
可得x1+x2=2m,
AB的中點坐標(biāo)為(m,2m),
由線段AB的中點在圓x2+y2=5上,
可得m2+4m2=5,解得m=±1.

點評 本題主要考查雙曲線標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),直線與雙曲線的位置關(guān)系,圓的簡單性質(zhì)等基礎(chǔ)知識.考查運算求解能力,推理論證能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知正項數(shù)列{an}中,a1=1,a2=$\sqrt{3},2{a_n}^2={a_{n+1}}^2+{a_{n-1}}$2(n≥2),則a5=(  )
A.9B.6C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=x3-3x2+1是減函數(shù)的單調(diào)區(qū)間為( 。
A.(2,+∞)B.(-∞,2)C.(-∞,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax3+bx+c在x=2處取得極值為c-6,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y+1≥0}\\{{x^2}+{y^2}≤4}\\{xy≥0}\end{array}}\right.$,則z=2x+y的取值范圍是(  )
A.$[-2,2\sqrt{5}]$B.[-2,0]C.$[-2\sqrt{5},2]$D.$[\frac{{2\sqrt{5}}}{5},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.5名旅客,安排在3個客房里,每個客房至少安排1名旅客,則不同方法有150種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$y=b+{a^{{x^2}+2x}}$(a,b是常數(shù),a>0且a≠1)在區(qū)間$[{-\frac{3}{2},0}]$上有最大值3,最小值為$\frac{5}{2}$.試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對于集合M,N定義M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).設(shè)M={y|y=x2-4x,x∈R},N={y|y=-3x,x∈R},則M⊕N=(-∞,-4)∪[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+a($\frac{1}{x}$-1),其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍;
(2)求證:對于任意的n∈N*,且n>1時,都有l(wèi)nn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$恒成立.

查看答案和解析>>

同步練習(xí)冊答案