分析 (Ⅰ)推導出D′A⊥AE,EC⊥AE,EC⊥D′E,從而EC⊥平面D′AE,進而AB⊥面D′AE,由此得到AB⊥D′A,從而D′A⊥面ABCD,進而D′A⊥BE,由此能證明D′A⊥GH.
(Ⅱ)三棱錐D'-BCE的體積${V}_{{D}^{'}-BCE}$=${V}_{C-{D}^{'}BC}$,由此能求出三棱錐D'-BCE的體積.
解答 證明:(Ⅰ)在△ADE中,∵AD'=2$\sqrt{3}$,D′E=4,AE=2,
∴AD'2+AE2=D′E2,∴D′A⊥AE,
∵EC⊥AE,EC⊥D′E,AE∩D′E=E,
∴EC⊥平面D′AE,
∵AB∥EC,∴AB⊥面D′AE,∴AB⊥D′A,
∵AE∩AB=A,∴D′A⊥面ABCD,
又∵BE?平面ABCD,∴D′A⊥BE,
∵G,H分別為D′B,D′E的中點,連結BE,
∴GH∥BE,∴D′A⊥GH.
解:(Ⅱ)由(Ⅰ)得D′A⊥面ABCD,
∴三棱錐D'-BCE的體積:
${V}_{{D}^{'}-BCE}$=${V}_{C-{D}^{'}BC}$=$\frac{1}{3}×2\sqrt{3}×\frac{1}{2}×2×2$=$\frac{4\sqrt{3}}{3}$.
點評 本題考查線線垂直的證明,考查三棱錐的體積的求法,考查推理論證能力、空間思維能力、運算求解能力,考查轉化化歸思想、數(shù)形結合思想,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{7}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x-y-4=0,2x-y-7=0 | B. | 2x+y-5=0,x-2y-5=0 | ||
C. | x-2y-1=0,2x-y-7=0 | D. | 2x-y-7=0,x+2y-1=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com