8.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{{\sqrt{5}}}{2}$x,且與橢圓$\frac{x^2}{12}+\frac{y^2}{3}$=1有公共焦點(diǎn),則C的方程為(  )
A.$\frac{x^2}{8}-\frac{y^2}{10}=1$B.$\frac{x^2}{5}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-\frac{y^2}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

分析 求出雙曲線的漸近線方程可得$\frac{a}$=$\frac{\sqrt{5}}{2}$,①求出橢圓的焦點(diǎn)坐標(biāo),可得c=3,即a2+b2=9,②,解方程可得a,b的值,進(jìn)而得到雙曲線的方程.

解答 解:雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{{\sqrt{5}}}{2}$x,
可得$\frac{a}$=$\frac{\sqrt{5}}{2}$,①
橢圓$\frac{x^2}{12}+\frac{y^2}{3}$=1的焦點(diǎn)為(±3,0),
可得c=3,即a2+b2=9,②
由①②可得a=2,b=$\sqrt{5}$,
則雙曲線的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用雙曲線的漸近線方程和橢圓的焦點(diǎn),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=${∫}_{0}^{1}$$\sqrt{x}$dx,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$x2dx,則a,b,c的大小關(guān)系是( 。
A.c<b<aB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,△AOB為等腰直角三角形,OA=l,OC為斜邊AB的髙,點(diǎn)P在射線OC 上,則$\overrightarrow{AP}$•$\overrightarrow{OP}$的最小值為( 。
A.-1B.-$\frac{1}{4}$C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.曲線f(x)=2x2+x-2在P0處的切線平行于直線y=5x-1,則點(diǎn)P0坐標(biāo)為(1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市統(tǒng)計(jì)局就本地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示月收入在[1000,1500)(單位:元)).
(1)估計(jì)居民月收入在[1500,2000)的頻率;
(2)根據(jù)頻率分布直方圖估計(jì)樣本數(shù)據(jù)的中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點(diǎn),則$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的最小值是( 。
A.-1B.$-\frac{4}{3}$C.$-\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,AB⊥BC,頂點(diǎn)A1在底面ABC內(nèi)的射影恰好是AB的中點(diǎn)O,且AB=BC=2.OA1=2,
(1)求證:平面ABB1A1⊥平面BCC1B1
(2)求直線A1C與平面ABC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是一個(gè)四面體的三視圖,則該四面體的體積為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=sin($\frac{π}{3}$-2x)的單調(diào)遞增區(qū)間是( 。
A.[-kπ-$\frac{π}{12}$,-kπ+$\frac{5π}{12}$],k∈ZB.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

同步練習(xí)冊(cè)答案