20.設(shè)z是復數(shù),|z-i|≤2(i是虛數(shù)單位),則|z|的最大值是   (  )
A.1B.2C.3D.4

分析 由題意畫出圖形,數(shù)形結(jié)合得答案.

解答 解:∵|z-i|≤2,
∴復數(shù)z在復平面內(nèi)對應點在以(0,1)為圓心,以2為半徑的圓及其內(nèi)部.

∴|z|的最大值為3.
故選:C.

點評 本題考查復數(shù)的代數(shù)表示法及其幾何意義,考查了復數(shù)模的求法,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知實數(shù) x,y滿足$\left\{\begin{array}{l}x+y≥a\\ x-y≤a\\ y≤a\end{array}\right.({a>0})$,若z=x2+y2的最小值為 2,則 a的值為( 。
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若x0是函數(shù)f(x)=log2x+2x的零點,則x0=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a=21.3,b=40.7,c=ln6,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足sin2B+sin2C=sin2A+2sinBsinCsin(B+C).
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)拋物線y2=8x的焦點與雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的右焦點重合,則b=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an},{bn}都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列{cn}.
(1)設(shè)數(shù)列{an},{bn}分別為等差、等比數(shù)列,若a1=b1=1,a2=b3,a6=b5,求c20
(2)設(shè){an}的首項為1,各項為正整數(shù),bn=3n,若新數(shù)列{cn}是等差數(shù)列,求數(shù)列{cn} 的前n項和Sn;
(3)設(shè)bn=qn-1(q是不小于2的正整數(shù)),c1=b1,是否存在等差數(shù)列{an},使得對任意的n∈N*,在bn與bn+1之間數(shù)列{an}的項數(shù)總是bn?若存在,請給出一個滿足題意的等差數(shù)列{an};若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若方程|lnx|=a有兩個不等的實根x1和x2,則x1+x2的取值范圍是( 。
A.(1,+∞)B.($\sqrt{2}$,+∞)C.(2,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.《最強大腦》是大型科學競技類真人秀節(jié)目,是專注傳播腦科學知識和腦力競技的節(jié)目.某機構(gòu)為了了解大學生喜歡《最強大腦》是否與性別有關(guān),對某校的100名大學生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡《最強大腦》不喜歡《最強大腦》合計
男生15
女生15
合計
已知在這100人中隨機抽取1人抽到不喜歡《最強大腦》的大學生的概率為0.4
( I)請將上述列聯(lián)表補充完整;判斷是否有99.9%的把握認為喜歡《最強大腦》與性別有關(guān),并說明理由;
( II)已知在被調(diào)查的大學生中有5名是大一學生,其中3名喜歡《最強大腦》,現(xiàn)從這5名大一學生中隨機抽取2人,抽到喜歡《最強大腦》的人數(shù)為X,求X的分布列及數(shù)學期望.
下面的臨界值表僅參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案