11.若x0是函數(shù)f(x)=log2x+2x的零點,則x0=$\frac{1}{2}$.

分析 求出原函數(shù)的導(dǎo)函數(shù),可知函數(shù)為定義域上的增函數(shù),再由f($\frac{1}{2}$)=0得答案.

解答 解:由f(x)=log2x+2x,得f′(x)=$\frac{1}{xln2}+2$>0(x>0),
∴函數(shù)f(x)=log2x+2x在(0,+∞)上為增函數(shù),
又f($\frac{1}{2}$)=$lo{g}_{2}\frac{1}{2}+2×\frac{1}{2}=-1+1=0$.
∴函數(shù)f(x)=log2x+2x有唯一的零點$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查函數(shù)零點的判定,訓(xùn)練了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+x+a,g(x)=ex
(Ⅰ)函數(shù)f(x)的圖象在點(1,f(1))處的切線與2x+y-1=0平行,求實數(shù)a的值;
(Ⅱ)設(shè)h(x)=$\frac{f(x)}{g(x)}$,當(dāng)x∈[0,2]時,$\frac{f(x)}{g(x)}$≥$\frac{1}{g(2)}$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=({ax+a+2})ln({x+1})+\frac{1}{2}a{x^2}-({2+a})x+1$.
(1)當(dāng)a=1時,判斷f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上為單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)$f(x)=2sin({x+\frac{π}{6}})+1$的圖象向右平移$\frac{π}{3}$個單位,再把所有點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),得函數(shù)y=g(x)的圖象,則g(x)圖象的一個對稱中心為( 。
A.$({\frac{π}{6},0})$B.$({\frac{π}{12},0})$C.$({\frac{π}{6},1})$D.$({\frac{π}{12},1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)$z=\frac{2i}{-1+i}$,則( 。
A.z的實部為1B.|z|=2
C.z的虛部為1D.z的共軛復(fù)數(shù)為-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z1=$\frac{m-i}{i}$(m∈R)與z2=2i的虛部相等,則復(fù)數(shù)z1對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表.
印刷冊數(shù)x(千冊)23458
單冊成本y(元)3.22.421.91.7
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,方程甲:$\widehat{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\widehat{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(Ⅰ)為了評價兩種模型的擬合效果,完成以下任務(wù).
(i)完成下表(計算結(jié)果精確到0.1);
印刷冊數(shù)x(千冊)23458
單冊成本y(元)3.22.421.91.7

模型甲
估計值$\widehat{{y}_{i}}$(1) 2.42.1 1.6
殘值$\widehat{{e}_{i}}$(1) 0-0.1 0.1

模型乙
估計值$\widehat{{y}_{i}}$(2) 2.321.9 
殘值$\widehat{{e}_{i}}$(2) 0.100 
(ii)分別計算模型甲與模型乙的殘差平方和Q1和Q2,并通過比較Q1,Q2的大小,判斷哪個模型擬合效果更好.
(Ⅱ)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷.根據(jù)市場調(diào)查,新需求量為10千冊,若印刷廠以每冊5元的價格將書籍出售給訂貨商,試估計印刷廠二次印刷獲得的利潤.(按(Ⅰ)中擬合效果較好的模型計算印刷單冊書的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)z是復(fù)數(shù),|z-i|≤2(i是虛數(shù)單位),則|z|的最大值是   ( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐E-ABCD中,平面CDE⊥平面ABCD,∠DAB=∠ABC=90°,AB=BC=1,AD=ED=3,EC=2.
(1)證明:AB⊥平面BCE;
(2)求直線AE與平面CDE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案