【題目】甲、乙兩位運(yùn)動(dòng)員一起參加賽前培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績(jī)中隨機(jī)抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:86 85 79 86 84 84 85 91
(Ⅰ)請(qǐng)你運(yùn)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)若用甲8次成績(jī)中高于85分的頻率估計(jì)概率,對(duì)甲同學(xué)在今后的3次測(cè)試成績(jī)進(jìn)行預(yù)測(cè),記這3次成績(jī)中高于85分的次數(shù)為,求的分布列及數(shù)學(xué)期望;
(Ⅲ)現(xiàn)要從中選派一人參加正式比賽,依據(jù)所抽取的兩組數(shù)據(jù)分析,你認(rèn)為選派哪位選手參加較為合適?并說(shuō)明理由.
【答案】(Ⅰ)莖葉圖見(jiàn)解析(Ⅱ)分布列見(jiàn)解析,(Ⅲ)派乙比較合適,理由見(jiàn)解析
【解析】
(Ⅰ)根據(jù)莖葉圖的繪制方法,結(jié)合數(shù)據(jù)繪制即可;
(Ⅱ)先計(jì)算高于分的概率,再求得的取值,由二項(xiàng)分布的概率求解即可求得其分布列;
(Ⅲ)求出兩組數(shù)據(jù)的平均數(shù)和方差,據(jù)此判斷即可.
(Ⅰ)作出莖葉圖如下:
(Ⅱ)記“甲同學(xué)在一次數(shù)學(xué)競(jìng)賽中成績(jī)高于85分”為事件A,.
隨機(jī)變量的可能取值為0,1,2,3,且.
所以,.
所以變量的分布列為
0 | 1 | 2 | 3 | |
P |
.
(Ⅲ)派乙參賽比較合適.
理由如下:
,
,
,
因?yàn)?/span> ,,
說(shuō)明乙的成績(jī)較穩(wěn)定,更容易發(fā)揮隊(duì)員水平,
所以派乙參賽比較合適.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民月收入總額(工資、薪金等)不超過(guò)免征額的部分不必納稅,超過(guò)免征額的部分為全月應(yīng)納稅所得額,個(gè)人所得稅稅款按稅率表分段累計(jì)計(jì)算.為了給公民合理減負(fù),穩(wěn)步提升公民的收入水平,自2018年10月1日起,個(gè)人所得稅免征額和稅率進(jìn)行了調(diào)整,調(diào)整前后的個(gè)人所得稅稅率表如下:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率 | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過(guò)1500元的部分 | 1 | 不超過(guò)3000元的部分 | ||
2 | 超過(guò)1500元至4500元的部分 | 2 | 超過(guò)3000元至12000元的部分 | ||
3 | 超過(guò)4500元至9000元的部分 | 3 | 超過(guò)12000元至25000元的部分 | ||
… | … | … | … | … | … |
(1)已知小李2018年9月份上交的稅費(fèi)是295元,10月份工資、薪金等稅前收入與9月份相同,請(qǐng)幫小李計(jì)算一下稅率調(diào)整后小李10月份的稅后實(shí)際收入是多少?
(2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100位不同層次員工的稅前收入,并制成下面的頻率分布直方圖.
(i)請(qǐng)根據(jù)頻率分布直方圖估計(jì)該公司員工稅前收入的中位數(shù);
(ii)同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,按調(diào)整后稅率表,試估計(jì)小李所在的公司員工該月平均納稅多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種水箱用的“浮球”是由兩個(gè)相同半球和一個(gè)圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強(qiáng)該“浮球”的牢固性,給“浮球”內(nèi)置一“雙蝶形”防壓卡,防壓卡由金屬材料桿,,,,,及焊接而成,其中,分別是圓柱上下底面的圓心,,,,均在“浮球”的內(nèi)壁上,AC,BD通過(guò)“浮球”中心,且、均與圓柱的底面垂直.
(1)設(shè)與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫(xiě)出的取值范圍;
(2)研究表明,四邊形的面積越大,“浮球”防壓性越強(qiáng),求四邊形面積取最大值時(shí),點(diǎn)到圓柱上底面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求,的值;
(2)證明函數(shù)存在唯一的極大值點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)法定勞動(dòng)年齡是周歲至退休年齡(退休年齡一般指男周歲,女干部身份周歲,女工人周歲).為更好了解我國(guó)勞動(dòng)年齡人口變化情況,有關(guān)專家統(tǒng)計(jì)了年我國(guó)勞動(dòng)年齡人口和周歲人口數(shù)量(含預(yù)測(cè)),得到下表:
其中年勞動(dòng)年齡人口是億人,則下列結(jié)論不正確的是( )
A.年勞動(dòng)年齡人口比年減少了萬(wàn)人以上
B.這年周歲人口數(shù)的平均數(shù)是億
C.年,周歲人口數(shù)每年的減少率都小于同年勞動(dòng)人口每年的減少率
D.年這年周歲人口數(shù)的方差小于這年勞動(dòng)人口數(shù)的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:定義在上的函數(shù)的極大值為.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的不等式有且只有一個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別是橢圓的左右焦點(diǎn).
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點(diǎn), ,求點(diǎn)的坐標(biāo).
(Ⅱ)若直線與圓相切,交橢圓于兩點(diǎn),是否存在這樣的直線,使得?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com