20.如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,$AC=BC=\frac{1}{2}A{A_1}=2$,點(diǎn)D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC;
(Ⅱ)求三棱錐C1-BDC的體積.

分析 (Ⅰ)由題設(shè)證明BC⊥平面ACC1A1,可得DC1⊥BC,再由已知可得∠ADC=∠A1DC1=45°,得∠CDC1=90°,即C1D⊥DC,結(jié)合線面垂直的判定得DC1⊥平面BDC,從而得到平面BDC1⊥平面BDC;
(Ⅱ)由等積法可得三棱錐C1-BDC的體積.

解答 (Ⅰ)證明:由題意知BC⊥CC1,BC⊥AC,AC∩CC1=C,
∴BC⊥平面ACC1A1,
又∵DC1?平面ACC1A1,∴DC1⊥BC.
∵∠ADC=∠A1DC1=45°,
∴∠CDC1=90°,即C1D⊥DC.
∵DC∩BC=C,
∴DC1⊥平面BDC,又∵DC1?平面BDC1
∴平面BDC1⊥平面BDC.
(Ⅱ)解:由$AC=BC=\frac{1}{2}A{A_1}=2$,得AA1=4,所以AD=2,
所以$CD=\sqrt{A{C^2}+A{D^2}}=\sqrt{{2^2}+{2^2}}=2\sqrt{2}$.
所以Rt△CDC1的面積$S=\frac{1}{2}×2\sqrt{2}×2\sqrt{2}=4$,
所以${V_{{C_1}-BDC}}={V_{B-CD{C_1}}}=\frac{1}{3}S•BC=\frac{1}{3}×4×2=\frac{8}{3}$.

點(diǎn)評(píng) 本題考查平面與平面垂直的判定,訓(xùn)練了利用等積法求多面體的體積,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=sinωx-sin(ωx+$\frac{π}{3}$)(ω>0).
(1)若f(x)在[0,π]上的值域?yàn)閇-$\frac{\sqrt{3}}{2}$,1],求ω的取值范圍;
(2)若f(x)在[0,$\frac{π}{3}$]上單調(diào),且f(0)+f($\frac{π}{3}$)=0,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在[-1,2]內(nèi)任取一個(gè)數(shù)a,則點(diǎn)(1,a)位于x軸下方的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$({x+\frac{m}{x}}){({2x-1})^5}$的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中含x的系數(shù)為-41.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD.
(2)若$cos∠BAD=\frac{1}{5}$,求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象,只需將y=cos(2x-$\frac{π}{6}$)圖象上的所有點(diǎn)( 。
A.向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長度B.向右平行移動(dòng)$\frac{π}{6}$個(gè)單位長度
C.向左平行移動(dòng)$\frac{π}{12}$個(gè)單位長度D.向右平行移動(dòng)$\frac{π}{12}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知定義在R上的函數(shù)f(x)=2|x|-1,記a=f(log0.53),b=f(log25),c=f(log2$\frac{1}{4}$),則a,b,c的大小關(guān)系為a<c<b(用不等式由小到大連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{x-1}{x+1}$,x∈[1,3]
(1)判斷函數(shù)的單調(diào)性,并用單調(diào)性的定義證明.
(2)求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.平行四邊形ABCD中,E為CD的中點(diǎn),動(dòng)點(diǎn)G在線段BE上,$\overrightarrow{AG}=x\overrightarrow{AB}+y\overrightarrow{AD}$,則2x+y=2.

查看答案和解析>>

同步練習(xí)冊答案