9.底面為菱形的直棱柱ABCD-A1B1C1D1中,E、F分別為棱A1B1、A1D1的中點(diǎn).
(Ⅰ)在圖中作一個(gè)平面α,使得BD?α,且平面AEF∥α,(不必給出證明過(guò)程,只要求作出α與直棱柱ABCD-A1B1C1D1的截面.)
(II)若AB=AA1=2,∠BAD=60°,求平面AEF與平面α的距離d.

分析 (Ⅰ)取B1C1的中點(diǎn)H,C1D1的中點(diǎn)G,平面BHGD就是所求平面α.
(Ⅱ)取BC中點(diǎn)M,以D為原點(diǎn),DA為x軸,DM為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面AEF與平面α的距離.

解答 解:(Ⅰ)取B1C1的中點(diǎn)H,C1D1的中點(diǎn)G,連結(jié)BH、GH、DH,
則平面BHGD就是所求平面α,
α與直棱柱ABCD-A1B1C1D1的截面為平面BHGD.
(Ⅱ)∵菱形的直棱柱ABCD-A1B1C1D1中,AB=AA1=2,∠BAD=60°,
∴取BC中點(diǎn)M,以D為原點(diǎn),DA為x軸,DM為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
A(2,0,0),D(0,0,0),B(1,$\sqrt{3}$,0),H(0,$\sqrt{3}$,2),
$\overrightarrow{DA}$=(2,0,0),$\overrightarrow{DB}$=(1,$\sqrt{3}$,0),$\overrightarrow{DH}$=(0,$\sqrt{3}$,2),
設(shè)平面α(即平面BHGD)的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=x+\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{DH}=\sqrt{3}y+2z=0}\end{array}\right.$,取y=2,得$\overrightarrow{n}$=(-2$\sqrt{3}$,2,-$\sqrt{3}$),
∴平面AEF與平面α的距離d=$\frac{|\overrightarrow{DA}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{4\sqrt{3}}{\sqrt{12+4+3}}$=$\frac{4\sqrt{57}}{19}$.

點(diǎn)評(píng) 本題考查滿足面面平行的平面的作法,考查兩平面間的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在等比數(shù)列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}為遞增數(shù)列,若${c_n}=\frac{1}{{{b_n}^2}}$,求證:${c_1}+{c_2}+{c_3}+…+{c_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求下列函數(shù)的導(dǎo)數(shù):
(1)y=x3-cosx;
(2)y=(3x2+2)(x-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.△ABC中,BC=7,AB=3,且$\frac{sinC}{sinB}$=$\frac{3}{5}$.
(1)求AC的長(zhǎng);
(2)求∠A的大;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(1,1),則下列結(jié)論中正確的是(  )
A.|$\overrightarrow{a}$|=|$\overrightarrow$|B.$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$C.$\overrightarrow{a}$⊥$\overrightarrow$D.($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,A=60°,B=45°,$b=\sqrt{6}$,則a=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)a=log25,b=log26,$c={9^{\frac{1}{2}}}$,則( 。
A.c>b>aB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.寫出數(shù)列$-\frac{1}{2}$,$\frac{4}{3}$,$-\frac{9}{4}$,$\frac{16}{5}$,…的一個(gè)通項(xiàng)公式an=$(-1)^{n}•\frac{{n}^{2}}{n+1}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知四邊形ABCD和BCGE均為直角梯形,AD∥BC,CE∥BG且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCGE,BC=CD=CE=2AD=2BG=2.
(1)求證:AG∥平面BDE;
(2)求三棱錐G-BDE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案