1.設(shè)a=log25,b=log26,$c={9^{\frac{1}{2}}}$,則( 。
A.c>b>aB.b>a>cC.c>a>bD.a>b>c

分析 利用對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)直接求解.

解答 解:∵log24=2<a=log25<b=log26<log28=3,
$c={9^{\frac{1}{2}}}$=3,
∴c>b>a.
故選:A.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C1的中心在原點,焦點在y軸上,且焦距為6,橢圓上的點到兩焦點的距離之和為10.
(1)求橢圓C1的標(biāo)準(zhǔn)方程和焦點坐標(biāo);
(2)若雙曲線C2與橢圓C1有相同的焦點,且實軸長是虛軸長的一半,求雙曲線C2的標(biāo)準(zhǔn)方程及其漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知正方形ABCD的邊長為4,E、F分別是AB、AD的中點,GC⊥平面ABCD,且GC=2,則點B到平面EFG的距離為$\frac{2\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.底面為菱形的直棱柱ABCD-A1B1C1D1中,E、F分別為棱A1B1、A1D1的中點.
(Ⅰ)在圖中作一個平面α,使得BD?α,且平面AEF∥α,(不必給出證明過程,只要求作出α與直棱柱ABCD-A1B1C1D1的截面.)
(II)若AB=AA1=2,∠BAD=60°,求平面AEF與平面α的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)袋中有兩個紅球一個黑球,除顏色不同,其他均相同,現(xiàn)有放回的抽取,每次抽取一個,記下顏色后放回袋中,連續(xù)摸三次,X表示三次中紅球被摸中的次數(shù),每個小球被抽取的幾率相同,每次抽取相對立,則方差D(X)=( 。
A.2B.1C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若從[1,4]上任取一個實數(shù)作正方形的邊長,則該正方形的面積大于4的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等比數(shù)列{an}中,若a2=5,a4=20,則a6=80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:an2-an-an+1+1=0,a1=2
(1)求a2,a3
(2)證明數(shù)列為遞增數(shù)列;
 (3)求證:$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.四棱錐P-ABCD的底面ABCD是邊長為6的正方形,且PA=PB=PC=PD,若一個半徑為1的球與此四棱錐所有面都相切,則該四棱錐的高是( 。
A.6B.5C.$\frac{9}{2}$D.$\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊答案