A. | $\frac{33}{65}$ | B. | 1 | C. | $\frac{63}{65}$ | D. | $\frac{1}{2}$ |
分析 α,β的范圍得出α-β的范圍,然后利用同角三角函數(shù)間的基本關(guān)系,由sin(α-β)和sinα的值,求出cos(α-β)和cosα的值,然后由β=α-(α-β),把所求的式子利用兩角差的正弦函數(shù)公式化簡(jiǎn)后,將各自的值代入即可求出值.
解答 解:由sinα=$\frac{12}{13}$,sin(α-β)=-$\frac{3}{5}$,α,β均為銳角,
得到α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
所以cos(α-β)=$\sqrt{1-si{n}^{2}(α-β)}$=$\frac{4}{5}$,cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{5}{13}$,
則sinβ=sin[α-(α-β)]=cos(α-β)sinα-sin(α-β)cosα=$\frac{4}{5}$×$\frac{12}{13}$-(-$\frac{3}{5}$)×$\frac{5}{13}$=$\frac{63}{65}$.
故選:C.
點(diǎn)評(píng) 此題考查學(xué)生靈活運(yùn)用同角三角函數(shù)間的基本關(guān)系及兩角和與差的正弦函數(shù)公式化簡(jiǎn)求值,是一道基礎(chǔ)題.做題時(shí)注意角度的變換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,+∞) | B. | (0,$\frac{4\sqrt{6}}{9}$) | C. | (-∞,-$\frac{4\sqrt{6}}{9}$) | D. | ($\frac{4\sqrt{6}}{9}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{54}{4}$ | B. | -6 | C. | 6 | D. | $\frac{54}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com