11.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+3cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),點(diǎn)P是C上的動(dòng)點(diǎn),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=-$\frac{3}{2}$.
(1)求曲線C的普通方程;
(2)求點(diǎn)P到直線l的距離的最大值.

分析 (1)由曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+3cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),利用平方關(guān)系可得普通方程.
(2)由(1)可得圓C的圓心C(3,0),半徑r=3.直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=-$\frac{3}{2}$,展開(kāi)為:$ρ(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$=-$\frac{3}{2}$,利用互化公式可得直角坐標(biāo)方程.求出圓心C到直線l的距離d.可得點(diǎn)P到直線l的距離的最大值=d+r=6.

解答 解:(1)由曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+3cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),利用平方關(guān)系可得:(x-3)2+y2=9.
(2)由(1)可得圓C的圓心C(3,0),半徑r=3.
直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=-$\frac{3}{2}$,展開(kāi)為:$ρ(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$=-$\frac{3}{2}$,
可得:x+$\sqrt{3}$y+3=0.
∴圓心C到直線l的距離d=$\frac{|3+0+3|}{\sqrt{{1}^{2}+(\sqrt{3})^{2}}}$=3.
∴點(diǎn)P到直線l的距離的最大值=d+r=6.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、直線與圓的位置關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)M(-1,0)和N(1,0),若某直線上存在點(diǎn)P,使得|PM|+|PN|=4,則稱(chēng)該直線為“橢型直線”.現(xiàn)有下列直線:①x-2y+6=0;②x-y=0;③2x-y+1=0;④x+y-3=0.其中是“橢型直線”的是( 。
A.①③B.①②C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,利用定義法證明f(x)在R上是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖的程序框圖,若輸入的a,b分別為78,182,則輸出的a=( 。
A.0B.2C.13D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和,已知$\frac{{S}_{5}}{{S}_{10}}$=$\frac{1}{3}$,若{an}是等比數(shù)列,則公比q=$\root{5}{2}$;若{an}是等差數(shù)列,則$\frac{{S}_{10}}{{S}_{20}}$=$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知△ABC中,AB=AC=4,BC=4$\sqrt{3}$,已知螞蟻在△ABC的內(nèi)部爬行,若不考慮螞蟻的大小,則某時(shí)刻該螞蟻距離△ABC的三個(gè)頂點(diǎn)距離均超過(guò)1的概率為1-$\frac{\sqrt{3}π}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=$\frac{\sqrt{1+{x}^{2}}+x-1}{\sqrt{1+{x}^{2}}+x+1}$是( 。
A.非奇非偶函數(shù)
B.既不是奇函數(shù),又不是偶函數(shù)奇函數(shù)
C.偶函數(shù)
D.奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=(1-2a)lnx+ax+$\frac{2}{x}$,其中a∈R.
(1)當(dāng)a=1時(shí),求f(x)的極值;
(2)記函數(shù)g(x)=f(x)+(2a-3)lnx-$\frac{3a+4}{x}$,若g(x)在區(qū)間[1,4]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知cosα+sin(α-$\frac{π}{6}$)=-$\frac{1}{3}$,則cos(2α+$\frac{π}{3}$)=$\frac{7}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案