分析 (1)由曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+3cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),利用平方關(guān)系可得普通方程.
(2)由(1)可得圓C的圓心C(3,0),半徑r=3.直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=-$\frac{3}{2}$,展開(kāi)為:$ρ(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$=-$\frac{3}{2}$,利用互化公式可得直角坐標(biāo)方程.求出圓心C到直線l的距離d.可得點(diǎn)P到直線l的距離的最大值=d+r=6.
解答 解:(1)由曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+3cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),利用平方關(guān)系可得:(x-3)2+y2=9.
(2)由(1)可得圓C的圓心C(3,0),半徑r=3.
直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=-$\frac{3}{2}$,展開(kāi)為:$ρ(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$=-$\frac{3}{2}$,
可得:x+$\sqrt{3}$y+3=0.
∴圓心C到直線l的距離d=$\frac{|3+0+3|}{\sqrt{{1}^{2}+(\sqrt{3})^{2}}}$=3.
∴點(diǎn)P到直線l的距離的最大值=d+r=6.
點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、直線與圓的位置關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ①② | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 2 | C. | 13 | D. | 26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 非奇非偶函數(shù) | |
B. | 既不是奇函數(shù),又不是偶函數(shù)奇函數(shù) | |
C. | 偶函數(shù) | |
D. | 奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com