4.若函數(shù)$f(x)=\left\{{\begin{array}{l}{a(x-1)+1,x<-1}\\{{a^{-x}},x≥-1}\end{array},(a>0}\right.$,且(a≠1)是R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍( 。
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$]D.[$\frac{1}{3}$,1)

分析 由于a>0,且f(x)是單調(diào)函數(shù),則f(x)是R上的單調(diào)增函數(shù),由一次函數(shù)和指數(shù)函數(shù)的單調(diào)性,可得a的范圍,再由a(-1-1)+1≤a,解不等式即可得到a的范圍.

解答 解:由于a>0,且f(x)是單調(diào)函數(shù),
則f(x)是R上的單調(diào)增函數(shù),
由x≥-1時(shí)f(x)單調(diào)增,
得到0<a<1,
且x=-1時(shí),a(-1-1)+1≤a,
解得a≥$\frac{1}{3}$,
故a的取值范圍為[$\frac{1}{3}$,1).
故選:D.

點(diǎn)評 本題考查分段函數(shù)的單調(diào)性的判斷,注意運(yùn)用一次函數(shù)和指數(shù)函數(shù)的單調(diào)性,以及分界點(diǎn)的情況,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知二次函數(shù)f(x)=mx2+4x+1,且滿足f(-1)=f(3).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)的定義域?yàn)椋?2,2],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知如表格所示數(shù)據(jù)的回歸直線方程為$\widehat{y}=3.8x+a$,則a的值為240.
 2 5 6
 y252  255 258263  267

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示,其體積為( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{10}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過點(diǎn)$P(1,-\frac{3}{2})$,離心率是$\frac{1}{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上任意一點(diǎn)P作圓O:x2+y2=3的切線l1,l2,設(shè)直線OP,l1,l2的斜率分別是k0,k1,k2,試問在三個(gè)斜率都存在且不為0的條件下,$\frac{1}{k_0}(\frac{1}{k_1}+\frac{1}{k_2})$是否是定值,請說明理由,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.[選做一]直線$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-3\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))和圓x2+y2=16交于A、B兩點(diǎn),則線段AB的中點(diǎn)坐標(biāo)為( 。
A.(3,-3)B.(3,-$\sqrt{3}$)C.($\sqrt{3}$,-3)D.(-3,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x0∈R,x${\;}_{0}^{2}$+1>0,則¬p為( 。
A.?x∈R,x2+1≤0B.?x∈R,x2+1<0C.?x∈R,x2+1<0D.?x∈R,x2+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,角A,B,C的對邊分別為a,b,c,已知acosB+bcosA=$\frac{a+b}{2}$,則C的最大值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.閱讀如圖所示的程序框圖,程序結(jié)束時(shí),輸出S的值為( 。
A.6B.21C.58D.141

查看答案和解析>>

同步練習(xí)冊答案