6.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2sin2x-1.
(1)求函數(shù)f(x)的對稱中心和單調(diào)遞減區(qū)間;
(2)若將函數(shù)f(x)圖象上每一點的橫坐標都縮短到原來的$\frac{1}{2}$(縱坐標不變),然后把所得圖象向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)的表達式.

分析 (1)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性、對稱中心,得出結論.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式

解答 解:(1)函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2sin2x-1=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),
由2x-$\frac{π}{6}$=kπ,k∈Z,解得x=$\frac{kπ}{2}$+$\frac{π}{12}$,
∴函數(shù)f(x)的對稱中心為($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z,
由$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解得$\frac{π}{3}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z
∴f(x)單調(diào)遞減區(qū)間為[$\frac{π}{3}$+kπ,$\frac{2π}{3}$+kπ],k∈Z,
(2)由f(x)=2sin(2x-$\frac{π}{6}$),將函數(shù)f(x)圖象上每一點的橫坐標都縮短到原來的$\frac{1}{2}$(縱坐標不變),得到y(tǒng)=2sin(4x-$\frac{π}{6}$),
然后把所得圖象向左平移$\frac{π}{6}$個單位,得到g(x)=2sin[4(x+$\frac{π}{6}$)-$\frac{π}{6}$]=2sin(4x-$\frac{π}{2}$)=-2cos4x.

點評 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性、對稱中心,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)的定義域為[-1,1],圖象如圖1所示;函數(shù)g(x)的定義域為[-2,2],圖象如圖2所示,設函數(shù)f(g(x))有m個零點,函數(shù)g(f(x))有n個零點,則m+n等于(  )
A.6B.10C.8D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知平面α⊥平面β,α∩β=b,a?α,則“a⊥b”是“a⊥β”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知定義在(0,+∞)上的函數(shù)f(x)滿足f(x)=x•[f′(x)+1],且f(1)=1,則f(x)的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知 f(x)=2lnx-ax+1(a∈R).
(Ⅰ)若a>0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若 f(x)有兩個不同零點 x1、x2 (x2>x1),f'(x)為 f(x)的導函數(shù),求證:f'($\frac{{{x_1}+2{x_2}}}{2}$)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=x3-ax2+bx+c.
(1)若f(x)在(-∞,+∞)上不單調(diào),試判斷a2與3b的大小關系;
(2)若f(x)在x=1時取得極值為c-$\frac{3}{2}$,且x∈[-1,2]時,c2>f(x)恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務.該地區(qū)某高級中學一興趣小組由9名高二級學生和6名高一級學生組成,現(xiàn)采用分層抽樣的方法抽取5人,組成一個體驗小組去市場體驗“共享單車”的使用.問:
(Ⅰ)應從該興趣小組中抽取高一級和高二級的學生各多少人;
(Ⅱ)已知該地區(qū)有X,Y兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學生都租X型車,高一級學生都租Y型車.如果從組內(nèi)隨機抽取2人,求抽取的2人中至少有1人在市場體驗過程中租X型車的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.一名工人維護3臺獨立的游戲機,一天內(nèi)3臺游戲機需要維護的概率分別為0.9、0.8和0.75,則一天內(nèi)至少有一臺游戲機不需要維護的概率為( 。
A.0.995B.0.54C.0.46D.0.005

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知關于x的方程|x|-2alog2(|x|+2)+a2=3有唯一實數(shù)解,則實數(shù)a的值為-1.

查看答案和解析>>

同步練習冊答案