【題目】某市一所高中為備戰(zhàn)即將舉行的全市羽毛球比賽,學(xué)校決定組織甲、乙兩隊(duì)進(jìn)行羽毛球?qū)官悓?shí)戰(zhàn)訓(xùn)練.每隊(duì)四名運(yùn)動(dòng)員,并統(tǒng)計(jì)了以往多次比賽成績(jī),按由高到低進(jìn)行排序分別為第一名、第二名、第三名、第四名.比賽規(guī)則為甲、乙兩隊(duì)同名次的運(yùn)動(dòng)員進(jìn)行對(duì)抗,每場(chǎng)對(duì)抗賽都互不影響,當(dāng)甲、乙兩隊(duì)的四名隊(duì)員都進(jìn)行一次對(duì)抗賽后稱(chēng)為一個(gè)輪次.按以往多次比賽統(tǒng)計(jì)的結(jié)果,甲、乙兩隊(duì)同名次進(jìn)行對(duì)抗時(shí),甲隊(duì)隊(duì)員獲勝的概率分別為,,,.
(1)進(jìn)行一個(gè)輪次對(duì)抗賽后一共有多少種對(duì)抗結(jié)果?
(2)計(jì)分規(guī)則為每次對(duì)抗賽獲勝一方所在的隊(duì)得1分,失敗一方所在的隊(duì)得0分,設(shè)進(jìn)行一個(gè)輪次對(duì)抗賽后甲隊(duì)所得分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.
【答案】(1)16種;(2)見(jiàn)解析,
【解析】
(1)每個(gè)同名次的對(duì)抗有2種結(jié)果,共有4個(gè)名次的對(duì)抗,所以有種結(jié)果;(2)由條件可知共5種情況,分別計(jì)算概率得到分布列和數(shù)學(xué)期望.
(1)由于甲、乙兩隊(duì)的四名隊(duì)員每進(jìn)行一次對(duì)抗賽都會(huì)有2種情況產(chǎn)生,所以一共有(種)
(2)X的可能取值分別為4,3,2,1,0,則
;
;
;
X的分布列為
X | 4 | 3 | 2 | 1 | 0 |
P |
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家統(tǒng)計(jì)了去年,兩種產(chǎn)品的月銷(xiāo)售額(單位:萬(wàn)元),繪制了月銷(xiāo)售額的雷達(dá)圖,圖中點(diǎn)表示產(chǎn)品2月份銷(xiāo)售額約為20萬(wàn)元,點(diǎn)表示產(chǎn)品9月份銷(xiāo)售額約為25萬(wàn)元.
根據(jù)圖中信息,下面統(tǒng)計(jì)結(jié)論錯(cuò)誤的是( )
A.產(chǎn)品的銷(xiāo)售額極差較大B.產(chǎn)品銷(xiāo)售額的中位數(shù)較大
C.產(chǎn)品的銷(xiāo)售額平均值較大D.產(chǎn)品的銷(xiāo)售額波動(dòng)較小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直四棱柱底面直角梯形,∥,,是棱上一點(diǎn),,,,,.
(1)求異面直線(xiàn)與所成的角;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AM與直線(xiàn)相切,且與圓N:外切
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)曲線(xiàn)C外且不在y軸上的點(diǎn)P作曲線(xiàn)C的兩條切線(xiàn),切點(diǎn)分別記為A,B,當(dāng)直線(xiàn)與的斜率之積為時(shí),求證:直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某港口某天0時(shí)至24時(shí)的水深(米)隨時(shí)間(時(shí))變化曲線(xiàn)近似滿(mǎn)足如下函數(shù)模型().若該港口在該天0時(shí)至24時(shí)內(nèi),有且只有3個(gè)時(shí)刻水深為3米,則該港口該天水最深的時(shí)刻不可能為( )
A.16時(shí)B.17時(shí)C.18時(shí)D.19時(shí)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 是上一點(diǎn),且.
(1)求證: 平面;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法:
①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;
②設(shè)有一個(gè)回歸方程,變量增加1個(gè)單位時(shí),平均增加5個(gè)單位
③線(xiàn)性回歸方程必過(guò)
④設(shè)具有相關(guān)關(guān)系的兩個(gè)變量的相關(guān)系數(shù)為,那么越接近于0,之間的線(xiàn)性相關(guān)程度越高;
⑤在一個(gè)列聯(lián)表中,由計(jì)算得的值,那么的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大。
其中錯(cuò)誤的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,若對(duì)于t∈R,f(t)≤kt恒成立,則實(shí)數(shù)k的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是自然對(duì)數(shù)的底數(shù),已知函數(shù),.
(1)求函數(shù)的最小值;
(2)函數(shù)在上能否恰有兩個(gè)零點(diǎn)?證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com