2.曲線g(x)=2cos(x+$\frac{π}{3}$)與直線y=0,x=-$\frac{π}{3}$,x=$\frac{π}{6}$所圍成的平面圖形的面積為2.

分析 由題意可得:所圍成的平面圖形的面積S=${∫}_{-\frac{π}{3}}^{\frac{π}{6}}$2cos(x+$\frac{π}{3}$)dx,利用微積分基本定理即可得出.

解答 解:由題意可得:所圍成的平面圖形的面積
S=${∫}_{-\frac{π}{3}}^{\frac{π}{6}}$2cos(x+$\frac{π}{3}$)dx=$2sin(x+\frac{π}{3}){|}_{-\frac{π}{3}}^{\frac{π}{6}}$=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了三角函數(shù)求值、微積分基本定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是定義在R上的偶函數(shù),并且滿足f(x+2)=-$\frac{1}{f(x)}$,當(dāng)2≤x≤3時(shí),f(x)=x,則f(109.5)=(  )
A.-2.5B.2.5C.5.5D.-5.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個(gè)袋中有大小形狀相同的2個(gè)紅球,2個(gè)藍(lán)球,一次從中摸出2個(gè)小球,當(dāng)至少有一個(gè)紅球時(shí),獲得1分,否則記零分,那么小明摸一次得分的概率為$\frac{5}{6}$;如果小明有放回地從中摸了3次,記小明總得分為ξ,則D(ξ)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知如圖,圓C、橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$(a>b>0)均經(jīng)過點(diǎn)M(2,$\sqrt{2}$),圓k的圓心為($\frac{5}{2}$,0),橢圓E的兩焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0)
(Ⅰ)分別求圓C和橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)過F1作直線l與圓C交于A、B兩點(diǎn),試探究|F1A|•|F2B|是否為定值?若是定值,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為了了解高三年級(jí)學(xué)生是否選擇文科與性別的關(guān)系,現(xiàn)隨機(jī)抽取我校高三男生、女生各25人進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)后得到如下列聯(lián)表:
文科理科合計(jì)
女生20525
男生101525
合計(jì)302050
(1)用分層抽樣的方法在選擇文科的學(xué)生中抽取6人,其中女生抽取多少人?
(2)在上述抽取的6人中任選2人,求恰有一名男生的概率.
(3)計(jì)算出統(tǒng)計(jì)量K2,并判斷是否有95%的把握認(rèn)為“選擇文科與性別有關(guān)”?
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一袋子中裝有大小相同的白球和黑球共m個(gè),其中有白球4個(gè),若從中任取2個(gè)球,則都是白球的概率為$\frac{1}{6}$,現(xiàn)從袋中不放回的摸球兩次,每次摸出1個(gè)球,則在第一次摸出黑球的條件下,第二次摸出的還是黑球的概率是( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)的圖象與函數(shù)h(x)=$x+\frac{1}{x}$的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=xf(x)+ax,且g(x)在區(qū)間(0,4]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在等差數(shù)列{an}中,a3+a4=12,公差d=2,則a9=( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某數(shù)學(xué)研究性學(xué)習(xí)小組,在研究如下問題:“某少數(shù)民族的刺繡有著悠久的歷史,如圖中(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形,求f(n).”
甲小組的方案是:先計(jì)算f(1),f(2),f(3),f(4),f(5);再計(jì)算f(2)-f(1),f(3)-f(2),f(4)-f(3),f(5)-f(4);進(jìn)而猜想f(n+1)-f(n)的關(guān)系式(不要證明);再利用累加法求得f(n);
乙小組的方案是:注意到該刺繡的圖案從左到右,各列中的小正方形圖案關(guān)于中間一列的小正方形圖案左右對(duì)稱,據(jù)此,從左到右,按各列的小正方形數(shù),先列出f(n)的求和的式子,再對(duì)之求和;現(xiàn)請(qǐng)你任選其中的一種方案,計(jì)算f(n).(注意:必須完成方案中的每一個(gè)步驟)

查看答案和解析>>

同步練習(xí)冊(cè)答案