分析 (I)$\frac{a-c}{a-b}$=$\frac{sin(A+C)}{sinA+sinC}$,由正弦定理可得:$\frac{a-c}{a-b}$=$\frac{sin(A+C)}{sinA+sinC}$=$\frac{sinB}{sinA+sinC}$=$\frac{a+c}$,化簡(jiǎn)利用余弦定理即可得出.(Ⅱ)取 BC中點(diǎn)D,則$|{\overrightarrow{C{A}}-\frac{1}{2}\overrightarrow{C{B}}}|=2=|{\overrightarrow{D{A}}}|$,在△ADC中,AD2=AC2+CD2-2 AC•CDcosC,化簡(jiǎn)利用基本不等式的性質(zhì)與三角形面積計(jì)算公式即可得出.
解答 解:(I)∵$\frac{a-c}{a-b}$=$\frac{sin(A+C)}{sinA+sinC}$,由正弦定理可得:$\frac{a-c}{a-b}$=$\frac{sin(A+C)}{sinA+sinC}$=$\frac{sinB}{sinA+sinC}$=$\frac{a+c}$,化為:a2-c2=ab-b2,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,C∈(0,π).
∴$C=\frac{π}{3}$.
(Ⅱ)取 BC中點(diǎn)D,則$|{\overrightarrow{C{A}}-\frac{1}{2}\overrightarrow{C{B}}}|=2=|{\overrightarrow{D{A}}}|$,
在△ADC中,AD2=AC2+CD2-2 AC•CDcosC,
即$4={b^2}+{({\frac{a}{2}})^2}-\frac{ab}{2}$$≥2\sqrt{\frac{{{a^2}{b^2}}}{4}}-\frac{ab}{2}=\frac{ab}{2}$,
∴ab≤8,當(dāng)且僅當(dāng)a=4,b=2時(shí)取等號(hào).
此時(shí)${S_{△{A}{B}C}}=\frac{1}{2}absinC=\frac{{\sqrt{3}}}{4}ab$,其最大值為$2\sqrt{3}$.
點(diǎn)評(píng) 本題考查了三角形面積計(jì)算公式、正弦定理余弦定理、數(shù)量積運(yùn)算性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$-cos1 | B. | $\frac{{π}^{2}}{2}$+1 | C. | π | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | tanα | B. | tan2α | C. | 2tanα | D. | 2tan2α |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com