分析 由已知得BD⊥PA,BD⊥AC,從而BD⊥平面PAC,進(jìn)而BD⊥PC.由此得到當(dāng)DM⊥PC(或BM⊥PC)時,平面MBD⊥平面PCD.
解答 解:∵在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,
M是PC上的一動點,
∴BD⊥PA,BD⊥AC,
∵PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC.
∴當(dāng)DM⊥PC(或BM⊥PC)時,即有PC⊥平面MBD.
而PC屬于平面PCD,∴平面MBD⊥平面PCD.
故答案為:①(或③).
點評 本題考查面面垂直的條件的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=e為極大值點 | B. | x=1為極大值點 | C. | x=1為極小值點 | D. | 無極值點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2] | B. | (0,1] | C. | [1,2] | D. | (2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com